Stat2 siRNA (h): sc-29492

The Power to Ouestion

BACKGROUND

Membrane receptor signaling by various ligands, including interferons and growth hormones such as EGF, induces activation of Jak kinases which then leads to tyrosine phosphorylation of the various Stat transcription factors. Stat1 and Stat2 are induced by IFN- α and form a heterodimer which is part of the ISGF3 transcription factor complex. Although early reports indicate Stat3 activation by EGF and IL-6, it has been shown that Stat3 β appears to be activated by both while Stat3 α is activated by EGF, but not by IL-6. Highest expresion of Stat4 is seen in testis and myeloid cells. IL-12 has been identified as an activator of Stat4. Stat5 has been shown to be activated by prolactin and by IL-3. Stat6 is involved in IL-4 activated signaling pathways.

CHROMOSOMAL LOCATION

Genetic locus: STAT2 (human) mapping to 12q13.3.

PRODUCT

Stat2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Stat2 shRNA Plasmid (h): sc-29492-SH and Stat2 shRNA (h) Lentiviral Particles: sc-29492-V as alternate gene silencing products.

For independent verification of Stat2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-29492A, sc-29492B and sc-29492C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

Stat2 siRNA (h) is recommended for the inhibition of Stat2 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

Stat2 (B-3): sc-514193 is recommended as a control antibody for monitoring of Stat2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor Stat2 gene expression knockdown using RT-PCR Primer: Stat2 (h)-PR: sc-29492-PR (20 μ I, 442 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- Shodeinde, A., et al. 2013. Stat3 inhibition induces apoptosis in cancer cells independent of Stat1 or Stat2. J. Mol. Biochem. 2: 18-26.
- Choi, H.J., et al. 2015. Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death. Breast Cancer Res. 17: 6.
- 3. Ogony, J., et al. 2016. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (Stat2)-dependent manner. Breast Cancer Res. 18: 25.
- 4. Provance, O.K., et al. 2021. Disrupting interferon- α and NF κ B crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer Lett. 514: 12-29.
- 5. Escher, T.E., et al. 2021. Enhanced IFN α signaling promotes ligand-independent activation of ER α to promote aromatase inhibitor resistance in breast cancer. Cancers 13: 5130.
- Kim, T.S., et al. 2022. IFN-γ induces IL-15 trans-presentation by epithelial cells via IRF1. J. Immunol. 208: 338-346.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**