β-2-Microglobulin siRNA (h): sc-29592

The Power to Question

BACKGROUND

Major histocompatibility complex (MHC) class 1 molecules bind to antigens for presentation on the surface of cells. The proteasome is responsible for producing these antigens from the components of foreign pathogens. MHC class 1 molecules consist of an α heavy chain that contains three subdomains (α 1, α 2, α 3), and a non-covalent associating light chain, known as β -2-Microglobulin. β -2-Microglobulin associates with the α 3 subdomain of the α heavy chain and forms an immunoglobulin domain-like structure that medi-ates proper folding and expression of MHC class 1 molecules. The α 1 and α 2 domains of the α heavy chain form the peptide antigen-binding cleft. Mice that lack β -2-Microglobulin protein show a normal distribution of T cells, yet have no mature CD4·8+ T cells and are defective in CD4·8+ T cell-mediated cytotoxicity. Interferon- γ can stimulate production of β -2-Microglobulin transcripts. The human β -2-Microglobulin gene maps to chromosome 15q21.1 and encodes a 119 amino acid protein. Mutations in the β -2-Microglobulin gene can enhance the progression of malignant melanoma phenotypes.

REFERENCES

- Skjødt, K., et al. 1986. Isolation and characterization of chicken and turkey β-2-Microglobulin. Mol. Immunol. 23: 1301-1309.
- 2. Dunon, D., et al. 1990. T cell precursor migration towards β -2-Microglobulin is involved in thymus colonization of chicken embryos. EMBO J. 9: 3315-3322.
- 3. Zijlstra, M., et al. 1990. β -2-Microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 344: 742-746.
- 4. Solheim, J.C., et al. 1995. Conformational changes induced in the MHC class I molecule by peptide and β -2-Microglobulin. Immunol. Res. 14: 200-217.
- Pamer, E. and Cresswell, P. 1998. Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol. 16: 323-358.
- Tsuyuki, Y., et al. 1998. IFN-γ induces coordinate expression of MHC class Imediated antigen presentation machinery molecules in adult mouse Schwann cells. Neuroreport 9: 2071-2075.

CHROMOSOMAL LOCATION

Genetic locus: B2M (human) mapping to 15q21.1.

PRODUCT

 $\beta\text{-}2\text{-}Microglobulin}$ siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $\beta\text{-}2\text{-}Microglobulin}$ shRNA Plasmid (h): sc-29592-SH and $\beta\text{-}2\text{-}Microglobulin}$ shRNA (h) Lentiviral Particles: sc-29592-V as alternate gene silencing products.

For independent verification of β -2-Microglobulin (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-29592A, sc-29592B and sc-29592C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 β -2-Microglobulin siRNA (h) is recommended for the inhibition of β -2-Microglobulin expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 β -2-Microglobulin (G-10): sc-46697 is recommended as a control antibody for monitoring of β -2-Microglobulin gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor $\beta\text{-}2\text{-Microglobulin}$ gene expression knockdown using RT-PCR Primer: $\beta\text{-}2\text{-Microglobulin}$ (h)-PR: sc-29592-PR (20 μI , 479 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**