

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Rhodium 5% on Carbon (wetted with ca. 55% Water)

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave

Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:
877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

One of the rarest elements found in small quantities associated with all native platinum in the minerals rhodite, sperrylite, iridosmine and in some nickel-copper ores. Belongs to the platinum group of metals. Used in alloys with platinum, as a corrosion-resistant electroplate for protecting silverware from tarnishing. Used also in high-reflectivity mirrors in cinema projectors and search-light. Spongy or black rhodium is used as a catalyst in various organic hydrogenations and oxidations.

SYNOMYS

Rh

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

RISK

Limited evidence of a carcinogenic effect.
Highly flammable.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.
- Not normally a hazard due to physical form of product.
- The platinoids and their compounds as a group are generally poorly absorbed from the gastrointestinal tract and absorption by other parenteral routes, excluding the intravenous (i.v.) route, is also negligible. Absorption by inhalation is generally higher. Following inhalation the majority of the dose is retained in the lungs and upper respiratory tract. After i.v. injection most platinoids distribute in the soft tissues. Excretion is mainly in the urine. (Orally administered platinoids are excreted primarily in the faeces.).
- Considered an unlikely route of entry in commercial/industrial environments.

EYE

- There is some evidence to suggest that this material can cause eye irritation and damage in some persons.
- Contact with the eye, by metal dusts, may produce mechanical abrasion or foreign body penetration of the eyeball.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic or foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhea, excessive urination and prostration may also occur. After exposure is removed, recovery occurs within 24-36 hours.

CHRONIC HEALTH EFFECTS

- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Smaller particles however, may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences.
- Rhodium compounds may produce renal toxicity as well as toxic symptoms of the central nervous system.
- Limited evidence exists which suggest that rhodium compounds might be carcinogens.
- Rhodium and inorganic rhodium compounds are classified in category 3B as suspected carcinogen by The Senate Commission of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). The administration of rhodium chloride (5 mg/l) produced lymphoma-leukaemia tumours in mice.
- Studies in chick embryos demonstrate teratogenic properties of rhodium chloride as signs of micromelia (reduction of limb size) and inhibition of feather growth have been reported.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

HAZARD RATINGS

		Min	Max	
Flammability:	3			
Toxicity:	2			
Body Contact:	2			
Reactivity:	2			
Chronic:	2			

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4

NAME	CAS RN	%
rhodium	7440-16-6	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
 - DO NOT attempt to remove particles attached to or embedded in eye .
 - Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
 - Seek urgent medical assistance, or transport to hospital.

SKIN

- If skin or hair contact occurs:
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- - If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- Treat symptomatically.
- Copper, magnesium, aluminum, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, galvanizing or smelting operations all give rise to thermally produced particulates of smaller dimension than might be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.
- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

capacity but these abnormalities resolve after several months.

- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not applicable
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not applicable

EXTINGUISHING MEDIA

■ Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- DO NOT use halogenated fire extinguishing agents.

FIRE FIGHTING

■

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapor fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

■

- Metal powders, while generally regarded as non-combustible, may burn when metal is finely divided and energy input is high.
- May react explosively with water.
- May be ignited by friction, heat, sparks or flame.
- Metal dust fires are slow moving but intense and difficult to extinguish.
- Will burn with intense heat.
- DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal.
- Containers may explode on heating.
- Dusts or fumes may form explosive mixtures with air.
- May REIGNITE after fire is extinguished.
- Gases generated in fire may be poisonous, corrosive or irritating.
- DO NOT use water or foam as generation of explosive hydrogen may result.

Decomposition may produce toxic fumes of: metal oxides.

FIRE INCOMPATIBILITY

■

- Reacts with acids producing flammable / explosive hydrogen (H2) gas

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Keep dry
 - NOTE: May develop pressure in containers; open carefully. Vent periodically.
- None known.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

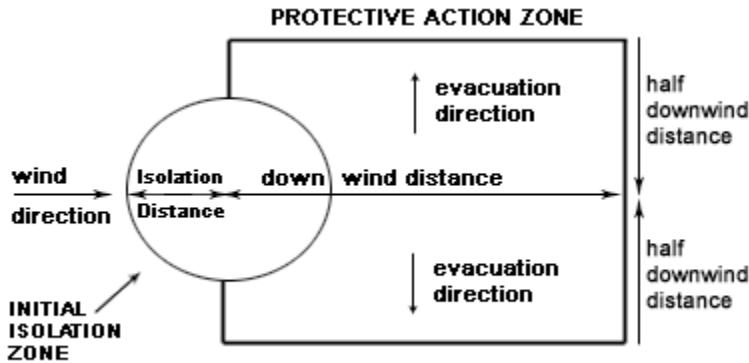
- Remove all ignition sources.
- DO NOT touch or walk through spilled material.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Prevent dust cloud.
- With clean shovel (preferably non-sparking) place material into clean, dry container and cover loosely.
- Move containers from spill area.
- Control personal contact by using protective equipment.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- DO NOT touch or walk through spilled material.
- Control personal contact by using protective equipment.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain or cover with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labeled containers for recycling.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area with water and dike for later disposal; prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

Rhodium 5% on Carbon (wetted with ca. 55% Water)


sc-296264

The Power to Question

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 50 meters

FOOTNOTES

- 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
- 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
- 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
- 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
- 5 Guide 170 is taken from the US DOT emergency response guide book.
- 6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

- AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
- AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
- AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Avoid smoking, naked lights or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Avoid contact with incompatible materials.
- Keep containers securely sealed when not in used.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Working clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing/handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Bulk bags: Reinforced bags required for dense materials.
- CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
Heavy gauge metal packages / Heavy gauge metal drums.
- For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C):
 - Removable head packaging and
 - cans with friction closures may be used.

Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material.

STORAGE REQUIREMENTS

- FOR MINOR QUANTITIES:
 - Store in an indoor fireproof cabinet or in a room of noncombustible construction
 - Provide adequate portable fire-extinguishers in or near the storage area.
- FOR PACKAGE STORAGE:
 - Store in original containers in approved flame-proof area.
 - No smoking, naked lights, heat or ignition sources.
 - DO NOT store in pits, depressions, basements or areas where vapors may be trapped.
 - Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks.
 - Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the packages are securely closed are not opened for any purpose while in the area where they are stored and (c) adequate precautions are taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely.
 - Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods.
 - Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m ³	STEL ppm	STEL mg/m ³	Peak ppm	Peak mg/m ³	TWA F/CC	Notes
Canada - Prince Edward Island Occupational Exposure Limits	rhodium (Rhodium - Metal)		1						TLV Basis: upper respiratory tract irritation
US ACGIH Threshold Limit Values (TLV)	rhodium (Rhodium - Metal)		1						TLV Basis: upper respiratory tract irritation
US - California Permissible Exposure Limits for Chemical Contaminants	rhodium (Rhodium, metal)		0.1						
US - Michigan Exposure Limits for Air Contaminants	rhodium (Rhodium, Metal fume (as Rh))		0.1						
US - Oregon Permissible Exposure Limits (Z1)	rhodium (Rhodium, Metal fume and dusts, as Rh)		0.1						
Canada - Nova Scotia Occupational Exposure Limits	rhodium (Rhodium - Metal)		1						TLV Basis: upper respiratory tract irritation
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	rhodium (Particulates Not Otherwise Classified (PNOC))		10						
Canada - British Columbia Occupational Exposure Limits	rhodium (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
US - Washington Permissible exposure limits of air contaminants	rhodium (Particulates not otherwise regulated - Total particulate)	10		20					
US - Washington Permissible exposure limits of air contaminants	rhodium (Particulates not otherwise regulated - Respirable fraction)	5		10					
Canada - Northwest Territories Occupational Exposure Limits (English)	rhodium (Rhodium, Metal Fume and dusts (as Rh))	0.1		0.3					
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	rhodium (Rhodium - Metal fume and dusts (as Rh))	-	0.1	-	0.3				
US - Minnesota Permissible Exposure Limits (PELs)	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)		0.1						
Canada - Ontario Occupational Exposure Limits	rhodium (Rhodium, metal and water-insoluble compounds of (as rhodium))		1						
Canada - British Columbia Occupational Exposure Limits	rhodium (Rhodium, Metal and insoluble compounds as Rh)	0.1		0.3					

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
US - Idaho - Limits for Air Contaminants	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
Canada - Alberta Occupational Exposure Limits	rhodium (Rhodium, as Rh - Metal and Insoluble compounds)	1		
US - Alaska Limits for Air Contaminants	rhodium (Rhodium (as Rh), Metal fume and insoluble compounds)	0.1		
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	rhodium (Rhodium, (as Rh): Metal and insoluble compounds)	1	3	
US - Washington Permissible exposure limits of air contaminants	rhodium (Rhodium (as Rh) - Insoluble compounds, metal fumes and dusts)	0.1	0.3	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
US NIOSH Recommended Exposure Limits (RELs)	rhodium (Rhodium (metal fume and insoluble compounds, as Rh))	0.1		
US OSHA Permissible Exposure Levels (PELs) - Table Z1	rhodium (Rhodium (as Rh), metal fume and insoluble compounds)	0.1		
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	rhodium (Rhodium: Metal and insoluble compounds (as Rh))	0.1		

EMERGENCY EXPOSURE LIMITS

Material	Revised IDLH Value (mg/m ³)	Revised IDLH Value (ppm)
rhodium	100	

MATERIAL DATA

RHODIUM:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

-
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Protective gloves eg. Leather gloves or gloves with Leather facing

Wear physical protective gloves, eg. leather.

Wear safety footwear.

OTHER

■

- Overalls.
- Eyewash unit.
- Barrier cream.

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Skin cleansing cream.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.
- - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
 - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
 - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
 - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
 - Use approved positive flow mask if significant quantities of dust becomes airborne.
 - Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply.

Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

For large scale or continuous use:

- Spark-free, earthed ventilation system, venting directly to the outside and separate from usual ventilation systems
- Provide dust collectors with explosion vents

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Vacuum cleaners, of flame-proof design, should be used to minimize dust accumulation.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimizes the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminum, zinc, magnesium or titanium.

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted state.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 meter/sec.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	102.91
Melting Range (°F)	3570.8	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not applicable	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Applicable	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Silver-white, soft, ductile, malleable metal. Not attacked by acids even aqua regia) in compact form but is attacked by aqua regia in finely divided form. Absorbs oxygen when melted at red heat to form sesquioxide.

Section 10 - CHEMICAL STABILITY

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Several platinum compounds, including trimethylplatinum derivatives are explosively unstable.
- Some compounds of the other platinum group metals are also of limited stability
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono- or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides

Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.
- Some metals can react exothermically with oxidizing acids to form noxious gases.
- Very reactive metals have been known to react with halogenated hydrocarbons, sometimes forming explosive compounds (for example, copper dissolves when heated in carbon tetrachloride).
- Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
- Elemental metals may react with azo/diazo compounds to form explosive products.
- Some elemental metals form explosive products with halogenated hydrocarbons.
- Reacts with acids producing flammable / explosive hydrogen (H₂) gas
- Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air.
- Safe handling is possible in relatively low concentrations of oxygen in an inert gas
- Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
- The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric
- Keep dry
- Reacts slowly with water.
- CAUTION contamination with moisture will liberate explosive hydrogen gas, causing pressure build up in sealed containers.
- Reacts violently with caustic soda, other alkalies - generating heat, highly flammable hydrogen gas.
- If alkali is dry, heat generated may ignite hydrogen - if alkali is in solution may cause violent foaming

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

rhodium

TOXICITY AND IRRITATION

- No significant acute toxicological data identified in literature search.

CARCINOGEN

Rhodium - Metal	US ACGIH Threshold Limit Values (TLV) - Carcinogens	Carcinogen Category	A4
RH-103M	US Environmental Defense Scorecard Recognized Carcinogens	Reference(s)	P65-MC
RH-103M	US Environmental Defense Scorecard Suspected Carcinogens	Reference(s)	P65-MC

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

RHODIUM:

■ Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

■ Rhodium is too rare for the amount of it in soils or natural waters to be assessed, and so its effect on the environment can be assumed to be nil. Test on plants have shown that it is the least toxic member of the platinum group of metals.

■ For platinum group metals (PGM):

Environmental fate:

The platinum group metals (PGMs) are a group of rare elements including platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os). Platinum group metals emitted as autocatalyst particles behave inertly and have limited mobility in soil so there would appear to be negligible risk to health, groundwater and the environment. However, it is possible for transformations to soluble, bioactive forms to occur.

The noble metals Pt, Pd and Rh are emitted from automobile catalytic converters. Besides terrestrial habitats, these metals are also introduced into aquatic biotopes via road runoff, where they accumulate in sediments of lakes and rivers. Solubility of PGM can increase by the presence of natural complexing agents such as humic acids. After the introduction to terrestrial and aquatic habitats, PGM can be taken up by the biosphere. The biological availability of Pt, Pd and Rh is affected by different complexing agents. Uptake and accumulation of PGM by plants and animals was demonstrated in several experiments and field studies. There is, however, little information how water quality may affect the biological availability of PGM to aquatic organisms.

Investigations with zebra mussels (*Dreissena polymorpha*) exposed to water containing road dust or ground catalytic converter material demonstrated that humic water of a bog lake clearly enhances the biological availability of particle bound Pt, Pd and Rh as compared with non-chlorinated tap water. In contrast, exposure studies with eels using soluble salts as the metal source showed higher Pt and Rh uptake in tap water than in humic water in most tissues.

Pd appears to precipitate quickly and to a high degree in tap water and seems to react mainly with fulvic acids in humic water. Fulvic acids tend to have lower molecular weights than humic acids and humin, so that metal-fulvic acid complexes are probably too small to be filtered by the ctenidia of the mussels. The enhancing effect of humic substances on the aqueous solubility and bioaccumulation of Rh may be explained by the formation of soluble, high molecular weight Rh-humic acid complexes which are filtered by the ctenidia of the mussels and then ingested.

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	4.1
Identification Numbers:	UN3089	PG:	II
Label Codes:	4.1	Special provisions:	IB8, IP2, IP4, T3, TP33
Packaging: Exceptions:	151	Packaging: Non-bulk:	212
Packaging: Exceptions:	151	Quantity limitations: Passenger aircraft/rail:	15 kg
Quantity Limitations: Cargo aircraft only:	50 kg	Vessel stowage: Location:	B
Vessel stowage: Other:	None		

Hazardous materials descriptions and proper shipping names:

Metal powders, flammable, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	4.1	ICAO/IATA Subrisk:	None
UN/ID Number:	3089	Packing Group:	II
Special provisions:	A3		

Shipping Name: METAL POWDER, FLAMMABLE, N.O.S.(CONTAINS RHODIUM)

Maritime Transport IMDG:

IMDG Class:	4.1	IMDG Subrisk:	None
UN Number:	3089	Packing Group:	II
EMS Number:	F-G,S-G	Special provisions:	944

Limited Quantities: 1 kg

Shipping Name: METAL POWDER, FLAMMABLE, N.O.S.(contains rhodium)

Section 15 - REGULATORY INFORMATION

Rhodium 5% on Carbon (wetted with ca. 55% Water)

sc-296264

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

rhodium (CAS: 7440-16-6) is found on the following regulatory lists:

"Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Connecticut Hazardous Air Pollutants", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - New Jersey Right to Know Hazardous Substances", "US - Oregon Permissible Exposure Limits (Z1)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US ACGIH Threshold Limit Values (TLV)", "US ACGIH Threshold Limit Values (TLV) - Carcinogens", "US CERCLA List of Hazardous Substances - Radionuclides", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-10-2009

Print Date: May-21-2010