BACKGROUND
The mammalian Ras (also designated v-Ha-Ras, Harvey rat sarcoma viral oncogene homolog, HRAS1, K-Ras, N-Ras, RASH1 or c-ras/has) gene family consists of the Harvey and Kirsten Ras genes (c-H-Ras1 and c-K-Ras2), an inactive pseudogene of each (c-H-Ras2 and c-K-Ras1) and the N-Ras gene. The three Ras oncogenes, H-Ras, K-Ras and N-Ras, encode proteins with GTP/GDP binding and GTPase activity. Ras proteins alternate between an inactive form bound to GDP and an active form bound to GTP, activated by a guanine nucleotide-exchange factor (GEF) and inactivated by a GTPase-activating protein (GAP). Ras nomenclature originates from the characterization of human DNA sequences homologous to cloned DNA fragments containing oncogenic sequences of a type C mammalian retrovirus, the Harvey strain of murine sarcoma virus (HaMSV), derived from the rat. Under normal conditions, Ras family members influence cell growth and differentiation events in a subcellular membrane compartmentalization-based signaling system. Oncogenic Ras can deregulate processes that control both cell proliferation and apoptosis. The Ras superfamily of GTP hydrolysis-coupled signal transduction relay proteins can be subclassified into Ras, Rho, Rab and ARF families.

APPLICATIONS
N-Ras (F155) is recommended for detection of N-Ras p21 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation (1-2µg per 100-500 µg of total protein) and N-Ras expression in HeLa (A), A-431 (B), Jurkat (C), NIH3T3 (D), NRK (E) and F9 (F) whole cell lysates.

DATA

SELECT PRODUCT CITATIONS