eIF2Bε siRNA (h): sc-35278 The Power to Overtin ## **BACKGROUND** The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. The eukaryotic initiation complex eIF2B exists as a five subunit complex composed of eIF2B α , eIF2B β , eIF2B β , eIF2B β , and eIF2B ϵ . The eIF2B complex catalyzes the exchange of GDP for GTP on the eIF2 complex, following the interaction of eIF2/GTP with the 40S ribosomal subunit. Guanine nucleotide exchange factor (GEF) activity is exhibited by the eIF2B ϵ subunit alone, but is greater in the presence of all five eIF2B subunits. Phosphorylation of eIF2 inhibits GEF activity of eIF2B, an inhibition that requires the eIF2B α subunit. ## **REFERENCES** - Henderson, R.A., et al. 1994. The δ subunit of murine guanine nucleotide exchange factor eIF2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. J. Biol. Chem. 269: 30517-30523. - 2. Flowers, K.M., et al. 1995. Structure and sequence of the gene encoding the α subunit of rat translation initiation factor-2B. Biochim. Biophys. Acta 1264: 163-167. - Price, N.T., et al. 1996. Cloning of cDNA for the γ subunit of mammalian translation initiation factor 2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Biochem. J. 318: 631-636. - 4. Price, N.T., et al. 1996. eIF2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Sequence conservation between the α , β and δ subunits of eIF2B from mammals and yeast. Biochem. J. 318: 637-643. - 5. Asuru, A.I., et al. 1996. Cloning and characterization of cDNAs encoding the ϵ subunit of eukaryotic initiation factor-2B from rabbit and human. Biochim. Biophys. Acta 1307: 309-317. - Webb, B.L. and Proud, C.G. 1997. Eukaryotic initiation factor 2B (eIF2B). Int. J. Biochem. Cell Biol. 29: 1127-1131. - Fabian, J.R., et al. 1997. Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J. Biol. Chem. 272: 12359-12365. ## CHROMOSOMAL LOCATION Genetic locus: EIF2B5 (human) mapping to 3q27.1. ## **PRODUCT** elF2B ϵ siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see elF2B ϵ shRNA Plasmid (h): sc-35278-SH and elF2B ϵ shRNA (h) Lentiviral Particles: sc-35278-V as alternate gene silencing products. For independent verification of eIF2B ϵ (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-35278A, sc-35278B and sc-35278C. ## **RESEARCH USE** For research use only, not for use in diagnostic procedures. ### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** eIF2B ϵ siRNA (h) is recommended for the inhibition of eIF2B ϵ expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** elF2B ϵ (B-7): sc-55558 is recommended as a control antibody for monitoring of elF2B ϵ gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor eIF2B ϵ gene expression knockdown using RT-PCR Primer: eIF2B ϵ (h)-PR: sc-35278-PR (20 µI). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products.