eIF3η siRNA (m): sc-35281 The Power to Question ## **BACKGROUND** The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. Eukaryotic initiation factors (elFs) are utilized in a sequence of reactions that lead to 80S ribosomal assembly and, ultimately, translation. The eukaryotic initiation factor-3 (elF3) scaffolding structure is the largest of the elF complexes and includes elF3 α , elF3 β all of which function to control the assembly of the 40S ribosomal subunit. Association of elF3 proteins with the 40S ribosomal subunit stabilizes elF2-GTP-Met-tRNA_iMet complex association and mRNA binding, and promotes dissociation of 80S ribosomes into 40S and 60S subunits, thereby promoting the assembly of the pre-initiation complex. Overexpression of elF3 proteins is common in several cancers, suggesting a role for elF3 proteins in tumorigenesis. # **REFERENCES** - Valasek, L., et al. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24: 9437-9455. - Peterson, T.R. and Sabatini, D.M. 2005. eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol. Cell 20: 655-657. - 3. Dong, Z. and Zhang, J.T. 2006. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol. 59: 169-180. - 4. LeFebvre, A.K., et al. 2006. Translation initiation factor elF4G-1 binds to elF3 through the elF3 ϵ subunit. J. Biol. Chem. 281: 22917-22932. - 5. Hinnebusch, A.G. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31: 553-562. - Masutani, M., et al. 2007. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26: 3373-3383. - Zhang, L., et al. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282: 5790-5800. - 8. Sato, H., et al. 2007. Measles virus N protein inhibits host translation by binding to elF3-p40. J. Virol. 81: 11569-11576. # CHROMOSOMAL LOCATION Genetic locus: Eif3b (mouse) mapping to 5 G2. ## **PRODUCT** elF3 η siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see elF3 η shRNA Plasmid (m): sc-35281-SH and elF3 η shRNA (m) Lentiviral Particles: sc-35281-V as alternate gene silencing products. For independent verification of elF3 η (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-35281A, sc-35281B and sc-35281C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** eIF3 η siRNA (m) is recommended for the inhibition of eIF3 η expression in mouse cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** elF3 η (C-5): sc-137214 is recommended as a control antibody for monitoring of elF3 η gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor eIF3 η gene expression knockdown using RT-PCR Primer: eIF3 η (m)-PR: sc-35281-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**