FOG-2 siRNA (h): sc-35401 The Power to Question ## **BACKGROUND** The FOG family of transcriptional cofactors, including FOG (friend of GATA-1) and FOG-2, are zinc finger proteins that interact with the GATA family of transcriptional regulators. FOG/GATA-1 complexes are required for erythroid and megakaryocyte maturation, and they promote differentiation during embryonic development. These complexes involve the association between multiple zinc fingers on the FOG proteins and the N-terminal zinc finger of GATA proteins. While FOG cooperatively regulates GATA-1 induced transcription, FOG-2 is able to both positively and negatively influence GATA mediated transcription. FOG-2 is predominantly expressed in heart, neurons and gonads, and it preferentially participates in the regulation of GATA-3, GATA-4 and GATA-6. In cardiomyocytes and fibroblasts, FOG-2 inhibits GATA-4 transcriptional activity, yet FOG-2 restores GATA-1 mediated transcription in erythroid cultures deficient in FOG, suggesting that the observed effects of FOG-2 are context specific and vary between cellular systems. ## **REFERENCES** - Tsang, A.P., et al. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90: 109-119. - Tsang, A.P., et al. 1998. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12: 1176-1188. - Tevosian, S.G., et al. 1999. FOG-2: a novel GATA-family cofactor related to multitype zinc-finger proteins friend of GATA-1 and U-shaped. Proc. Natl. Acad. Sci. USA 96: 950-955. - Svensson, E.C., et al. 1999. Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc. Natl. Acad. Sci. USA 96: 956-961. - Fox, A.H., et al. 1999. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18: 2812-2822. - 6. Lu, J.R., et al. 1999. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol. Cell. Biol. 19: 4495-4502. ## CHROMOSOMAL LOCATION Genetic locus: ZFPM2 (human) mapping to 8q23.1. #### **PRODUCT** FOG-2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see FOG-2 shRNA Plasmid (h): sc-35401-SH and FOG-2 shRNA (h) Lentiviral Particles: sc-35401-V as alternate gene silencing products. For independent verification of FOG-2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-35401A, sc-35401B and sc-35401C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** FOG-2 siRNA (h) is recommended for the inhibition of FOG-2 expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** FOG-2 (H-5): sc-398011 is recommended as a control antibody for monitoring of FOG-2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor FOG-2 gene expression knockdown using RT-PCR Primer: FOG-2 (h)-PR: sc-35401-PR (20 $\mu\text{I},$ 452 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**