GAD-67 siRNA (h): sc-35435 The Power to Question #### **BACKGROUND** There are two forms of glutamic acid decarboxylases (GADs) that are found in the brain: GAD-65 (also known as GAD2) and GAD-67 (also known as GAD1, GAD or SCP). GAD-65 and GAD-67 are members of the group II decarboxylase family of proteins and are responsible for catalyzing the rate limiting step in the production of GABA (γ -aminobutyric acid) from L-glutamic acid. Although both GADs are found in the brain, GAD-65 localizes to synaptic vesicle membranes in nerve terminals, while GAD-67 is distributed throughout the cell. GAD-67 is responsible for the basal levels of GABA synthesis. In the case of a heightened demand for GABA in neurotransmission, GAD-65 will transiently activate to assist in GABA production. The loss of GAD-65 is detrimental and can impair GABA neurotransmission, however the loss of GAD-67 is lethal. Due to alternative splicing, two isoforms exist for GAD-67, the predominant GAD-67 form and the minor GAD-25 form. GAD-25 is not expressed in brain but can be found in a variety of endocrine tissues. # **REFERENCES** - Chessler, S.D., et al. 2002. Immune reactivity to GAD-25 in type 1 diabetes mellitus. Autoimmunity 35: 335-341. - 2. Kanter, I.C., et al. 2007. Cyclophosphamide for anti-GAD antibody-positive refractory status epilepticus. Epilepsia 49: 914-920. - 3. Korpershoek, E., et al. 2007. Expression of GAD-67 and novel GAD-67 splice variants during human fetal pancreas development: GAD-67 expression in the fetal pancreas. Endocr. Pathol. 18: 31-36. - Kanaani, J., et al. 2008. A palmitoylation cycle dynamically regulates partitioning of the GABA-synthesizing enzyme GAD-65 between ER-Golgi and post-Golgi membranes. J. Cell Sci. 121: 437-449. - Wei, J. and Wu, J.Y. 2008. Post-translational regulation of L-glutamic acid decarboxylase in the brain. Neurochem. Res. 33: 1459-1465. - 6. Hwang, I.K., et al. 2008. Comparison of glutamic acid decarboxylase 67 immunoreactive neurons in the hippocampal CA1 region at various age stages in dogs. Neurosci. Lett. 431: 251-255. - 7. Ito, T., et al. 2008. Some γ -motoneurons contain γ -aminobutyric acid in the rat cervical spinal cord. Brain Res. 1201: 78-87. - 8. Hamilton, K.A., et al. 2008. Sensory deafferentation transsynaptically alters neuronal GluR-1 expression in the external plexiform layer of the adult mouse main olfactory bulb. Chem. Senses 33: 201-210. - 9. Jain, R., et al. 2008. Innocuous IFN-γ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J. Exp. Med. 205: 207-218. # **CHROMOSOMAL LOCATION** Genetic locus: GAD1 (human) mapping to 2q31.1. #### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. #### **PRODUCT** GAD-67 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see GAD-67 shRNA Plasmid (h): sc-35435-SH and GAD-67 shRNA (h) Lentiviral Particles: sc-35435-V as alternate gene silencing products. For independent verification of GAD-67 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-35435A, sc-35435B and sc-35435C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** GAD-67 siRNA (h) is recommended for the inhibition of GAD-67 expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** GAD-67 (F-6): sc-28376 is recommended as a control antibody for monitoring of GAD-67 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). #### **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor GAD-67 gene expression knockdown using RT-PCR Primer: GAD-67 (h)-PR: sc-35435-PR (20 μ l, 570 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. # **RESEARCH USE** For research use only, not for use in diagnostic procedures. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com