

α-Carotene

sc-358725

The Power to Question

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

α-Carotene

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNOMYS

C40-H56

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	0		Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4
Reactivity:	1		
Chronic:	2		

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Retinoid poisoning, as characterised by Vitamin A intoxication, may occur at high doses and is characterised by sedation, headache, irritability, papilloedema (oedema of the optic disk), and a generalised peeling of the skin. Although vitamin A is useful in preventing and treating chemical sensitivity, many chemically sensitive individuals, especially those who exhibit formaldehyde sensitivity, cannot tolerate it following oral administration.

Retinoids are frequently produced, in the organism, as a result of carotenoid metabolism.

Retinoids such as etretinate and isotretinoin, taken in therapeutic doses, may produce dryness of the mucous membranes, sometimes with erosion, involving the lips (cheilitis), mouth, conjunctiva (sometimes causing conjunctivitis), and nasal mucosa and epistaxis (rarely causing epistaxis). Other symptoms may include flare-up of acne, peeling of the palms, soles and fingertips, rhinorrhoea, nosebleed, gingival bleeding, nail fragility, easy sunburning, fever and mild headache. Ocular defects may include problems with night vision, and alterations in colour perception. Musculoskeletal effects include aching joints and backache. Neurological symptoms include fatigue, minor depression, and insomnia. Decreased libido and menstrual irregularities have been reported in etretinate therapies. Liver and kidney dysfunction has been suggested after abnormal laboratory tests and following the appearance of calcified tendons and ligaments in the ankles, pelvis, and knees; hepatitis has been reported in a significant number of patients (1.5%). Dryness of the skin may result in scaling, thinning, pruritus, exfoliation, and erythema. Thinning of the hair or alopecia may occur by the fourth week of etretinate treatment. Skeletal hyperostosis, benign intracranial hypertension, musculoskeletal pain, gastrointestinal effects and paronychia have also occurred. Serum levels of hepatic enzymes and triglyceride concentrations may be elevated.

Isotretinoin therapy has produced corneal opacities and premature epiphyseal closure. Such therapy has also been associated with skin infection and an inflammatory bowel syndrome.

EYE

- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Prolonged overdose of Vitamin A is associated with fatigue, irritability, loss of weight and appetite, mild fever, increased amounts of urine, enlarged liver and spleen, hair loss, bleeding lips, thickening of skin and yellow pigmentation. Bone and joint pain may occur, and growth may be permanently arrested in children.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
alpha-carotene	7488-99-5	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

- If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

- If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Not applicable.

Upper Explosive Limit (%): Not available.

Specific Gravity (water=1): Not available

Lower Explosive Limit (%): Not available.

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO₂), other pyrolysis products typical of burning organic material. May emit poisonous fumes.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles:

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.

Store in darkness in sealed ampoules and at low temperature (< 20 deg C.). Oxidation in light is autocatalytic giving rise to inactive colourless oxidation products.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m ³	STEL ppm	STEL mg/m ³	Peak ppm	Peak mg/m ³	TWA F/CC	Notes
US - California Permissible Exposure Limits for Chemical Contaminants	alpha-carotene (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	alpha-carotene (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	alpha-carotene (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	alpha-carotene (Particulates not otherwise regulated, Respirable dust)		5						
Canada - Prince Edward Island Occupational Exposure Limits	alpha-carotene (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Particulate

EYE

- Safety glasses with side shields
- Chemical goggles.

HANDS/FEET

■ Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	536.85
Melting Range (°F)	361.4- 365 in vacuo	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not Available	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not available.
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Deep purple prisms, decolourise in light, insoluble in water. No odour. Soluble in carbon disulfide, chloroform, ether, benzene. Absorbs oxygen from the air giving rise to inactive, colourless oxidation products.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Presence of heat source and direct sunlight.
- Presence of air.

STORAGE INCOMPATIBILITY

- Avoid storage with reducing agents.

The very feature which confers the important properties on carotenoids (antioxidants) also makes them unstable. The structures break down with attack by free radicals, such as singlet molecular oxygen and other reactive species. The common degradation pathways are isomerisation, oxidation and fragmentation of the carotenoid molecules. Heat, light and acids promote isomerisation of the trans-form of carotenoids to the cis-form. Light, enzymes, pro-oxidant metals and co-oxidation with unsaturated lipids, on the other hand, induce oxidation. Pyrolysis occurs under intense heat with expulsion of low molecular weight molecules.

The fact that carotenoid pigments are made up of a system of conjugated double bonds makes them vulnerable to heat. When intense heat is applied, the tine(?) structures are cleaved and molecular reactions occur, involving the double bonds. Two types of thermal degradation products are formed: a volatile fraction of low molecular weight molecules which is vapourised, and a non-volatile fraction from the larger fragments of the carotene molecules after cleaving off the volatile fraction. the volatile fraction may include 2,6-dimethylnaphthalene, toluene, m-xylene.

During carotene oxidation a catalytic agent is formed which causes accelerated deterioration. A strong smell of ionine develops upon the auto-oxidation (the end-rings of the carotene molecule split off).

Avoid reaction with oxidizing agents.

Do not expose to light, heat and air.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ALPHA-CAROTENE

TOXICITY AND IRRITATION

ALPHA-CAROTENE:

- No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
alpha-carotene	HIGH		LOW	LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

alpha-carotene (CAS: 7488-99-5) is found on the following regulatory lists:

"Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-22-2008

Print Date:Jan-8-2011