p22-phox siRNA (m): sc-36150

The Power to Question

BACKGROUND

Mox1 and the glycoprotein gp91-phox are largely related proteins that are essential components of the NADPH oxidase. The superoxide-generating NADPH oxidase is present in phagocytes, neuroepithelial bodies, vascular smooth muscle cells, and endothelial cells. It includes a membrane-bound flavocytochrome containing two subunits, gp91-phox and p22-phox, and the cytosolic proteins p47-phox and p67-phox. During activation of the NADPH oxidase, p47-phox and p67-phox migrate to the plasma membrane where they associate with the flavocytochrome, cytochrome b558 to form the active enzyme complex. The p22 and gp91-phox subunits also function as surface O_2 sensors that initiate cellular signaling in response to hypoxic conditions.

CHROMOSOMAL LOCATION

Genetic locus: Cyba (mouse) mapping to 8 E1.

PRODUCT

p22-phox siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see p22-phox shRNA Plasmid (m): sc-36150-SH and p22-phox shRNA (m) Lentiviral Particles: sc-36150-V as alternate gene silencing products.

For independent verification of p22-phox (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36150A, sc-36150B and sc-36150C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

p22-phox siRNA (m) is recommended for the inhibition of p22-phox expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

p22-phox (E-11): sc-271968 is recommended as a control antibody for monitoring of p22-phox gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor p22-phox gene expression knockdown using RT-PCR Primer: p22-phox (m)-PR: sc-36150-PR (20 μ I, 416 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- Loane, D.J., et al. 2009. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem. 284: 15629-15639.
- Zhao, R., et al. 2011. Involvement of NADPH oxidase in up-regulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts induced by oxidized LDL and in apolipoprotein E-deficient mice. Free Radic. Res. 45: 1013-1023.
- 3. Edderkaoui, M., et al. 2011. NADPH oxidase activation in pancreatic cancer cells is mediated through Akt-dependent up-regulation of p22-phox. J. Biol. Chem. 286: 7779-7787.
- Zhao, R., et al. 2013. Regulatory role of NADPH oxidase in glycated LDLinduced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice. Free Radic. Biol. Med. 61: 18-25.
- Luo, T., et al. 2013. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology 119: 1370-1388.
- Zhang, J., et al. 2014. Enhanced expression and activity of Nox2 and Nox4 in the macula densa in ANG II-induced hypertensive mice. Am. J. Physiol. Renal Physiol. 306: F344-F350.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**