PKC α siRNA (m): sc-36244 The Power to Question ## **BACKGROUND** Members of the protein kinase C (PKC) family play a key regulatory role in a variety of cellular functions including cell growth and differentiation, gene expression, hormone secretion and membrane function. PKCs were originally identified as serine/threonine protein kinases whose activity was dependent on calcium and phospholipids. Diacylglycerols (DAG) and tumor promoting phorbol esters bind to and activate PKC. PKCs can be subdivided into at least two major classes, including conventional (c) PKC isoforms (α , β I, β II and γ) and novel (n) PKC isoforms (δ , ϵ , ζ , η , θ , λ / ι , μ and ν). Patterns of expression for each PKC isoform differs among tissues and PKC family members exhibit clear differences in their cofactor dependencies. For instance, the kinase activities of PKC δ and ϵ are independent of Ca²⁺. On the other hand, most of the other PKC members possess phorbol ester-binding activities and kinase activities. # **CHROMOSOMAL LOCATION** Genetic locus: Prkca (mouse) mapping to 11 E1. ## **PRODUCT** PKC α siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see PKC α shRNA Plasmid (m): sc-36244-SH and PKC α shRNA (m) Lentiviral Particles: sc-36244-V as alternate gene silencing products. For independent verification of PKC α (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36244A, sc-36244B and sc-36244C. ## STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### **APPLICATIONS** PKC α siRNA (m) is recommended for the inhibition of PKC α expression in mouse cells. # **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. #### **GENE EXPRESSION MONITORING** PKC α (H-7): sc-8393 is recommended as a control antibody for monitoring of PKC α gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). # **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor PKC α gene expression knockdown using RT-PCR Primer: PKC α (m)-PR: sc-36244-PR (20 μ l, 494 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. # **SELECT PRODUCT CITATIONS** - 1. Kim, J., et al. 2011. Sustained inhibition of PKC α reduces intravasation and lung seeding during mammary tumor metastasis in an *in vivo* mouse model. Oncogene 30: 323-333. - Wang, Y., et al. 2011. M-CSF induces monocyte survival by activating NFκB p65 phosphorylation at Ser276 via protein kinase C. PLoS ONE 6: e28081. - 3. Wen, J., et al. 2011. Specific PKC isoforms regulate LPS-stimulated iNOS induction in murine microglial cells. J. Neuroinflammation 8: 38. - Zhang, Q., et al. 2013. Interaction between nitric oxide and superoxide in the macula densa in aldosterone-induced alterations of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 304: F326-F332. - 5. Halder, K., et al. 2014. Overexpressed PKC δ downregulates the expression of PKC α in B16F10 melanoma: induction of apoptosis by PKC δ via ceramide generation. PLoS ONE 9: e91656. - Lee, K., et al. 2014. Protein kinase C regulates vascular calcification via cytoskeleton reorganization and osteogenic signaling. Biochem. Biophys. Res. Commun. 453: 793-797. - 7. Zhou, X., et al. 2015. Transient receptor potential channel 1 deficiency impairs host defense and proinflammatory responses to bacterial infection by regulating protein kinase $C\alpha$ signaling. Mol. Cell. Biol. 35: 2729-2739. - 8. Chiu, Y.T., et al. 2017. Agonist-dependent and -independent κ opioid receptor phosphorylation: distinct phosphorylation patterns and different cellular outcomes. Mol. Pharmacol. 92: 588-600. - Lee, S.J., et al. 2019. PKC δ mediates NFκB inflammatory response and downregulates SIRT1 expression in liver fibrosis. Int. J. Mol. Sci. 20: 4607. # **RESEARCH USE** For research use only, not for use in diagnostic procedures. #### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**