SH-PTP2 siRNA (h): sc-36488

The Power to Question

BACKGROUND

The steady state of protein tyrosyl phosphorylation in cells is regulated by the opposing action of tyrosine kinases and protein tyrosine phosphatases (PTPs). Several groups have independently identified a non-transmembrane PTP, designated SH-PTP1 (also known as PTP1C, HCP and SHP), which is primarily expressed in hematopoietic cells and characterized by the presence of two SH2 domains N-terminal to the PTP domain. SH2 domains generally mediate the association of regulatory molecules with specific phosphotyrosine-containing sites on autophosphorylated receptors, thereby controlling the initial interaction of receptors with these substrates. A second and much more widely expressed PTP with SH2 domains, SH-PTP2 (also designated PTP1D and Syp), has been identified. Strong sequence similarity between SH-PTP2 and the *Drosophila* gene corkscrew (CSW) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog.

REFERENCES

- Chernoff, J., et al. 1990. Cloning of a cDNA for a major human proteintyrosine-phosphatase. Proc. Natl. Acad. Sci. USA 87: 2735-2739.
- Shen, S., et al. 1991. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352: 736-739.

CHROMOSOMAL LOCATION

Genetic locus: PTPN11 (human) mapping to 12q24.13.

PRODUCT

SH-PTP2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see SH-PTP2 shRNA Plasmid (h): sc-36488-SH and SH-PTP2 shRNA (h) Lentiviral Particles: sc-36488-V as alternate gene silencing products.

For independent verification of SH-PTP2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36488A, sc-36488B and sc-36488C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

SH-PTP2 siRNA (h) is recommended for the inhibition of SH-PTP2 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

SH-PTP2 (B-1): sc-7384 is recommended as a control antibody for monitoring of SH-PTP2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor SH-PTP2 gene expression knockdown using RT-PCR Primer: SH-PTP2 (h)-PR: sc-36488-PR (20 μ I, 473 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- Petti, L.M. 2007. Identification of a potent apoptotic peptide produced by fibroblasts; studies towards the design of a novel agent for breast cancer therapy. ResearchGate. E-published.
- 2. Petti, L.M., et al. 2008. Transforming signals resulting from sustained activation of the PDGF β receptor in mortal human fibroblasts. J. Cell Sci. 121: 1172-1182.
- Tossidou, I., et al. 2008. Tyrosine phosphatase SHP-2 is a regulator of p27^{Kip1} tyrosine phosphorylation. Cell Cycle 7: 3858-3868.
- Nystrom, A., et al. 2009. Role of tyrosine phosphatase SHP-1 in the mechanism of endorepellin angiostatic activity. Blood 114: 4897-4906.
- 5. Sinha, S., et al. 2009. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J. Cell Sci. 122: 3385-3392.
- 6. Kim, S.H., et al. 2012. Antagonism of VEGF-A-induced increase in vascular permeability by an integrin $\alpha 3\beta 1$ -SHP-1-cAMP/PKA pathway. Blood 120: 4892-4902.
- 7. Yu, J., et al. 2013. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J. Biol. Chem. 288: 3823-3830.
- Lee, J.H., et al. 2014. Capillarisin inhibits constitutive and inducible Stat3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett. 345: 140-148.

RESEARCH USE

For research use only, not for use in diagnostic procedures.