
# SANTA CRUZ BIOTECHNOLOGY, INC.

# WAPL (A-7): sc-365189



## BACKGROUND

WAPL (wings apart-like), also known as WAPAL or FOE, is a 1,190 amino acid protein that contains one WAPL domain and is expressed as two alternatively spliced isoforms, one of which localizes to the nucleus. Expressed in an isoform-dependent manner in heart, skeletal muscle and uterine cervix tumor tissue, WAPL is involved in sister-chromatid adhesion and overall cell growth, specifically playing a role in the development and metastasis of cancerous tissue. The gene encoding WAPL maps to human chromosome 10, which houses over 1,200 genes and comprises nearly 4.5% of the human genome. Defects in some of the genes that map to chromosome 10 are associated with Charcot-Marie-Tooth disease, Jackson-Weiss syndrome, Usher syndrome, nonsyndromatic deafness, Wolman's syndrome, Cowden syndrome, multiple endocrine neoplasia type 2 and porphyria.

## **CHROMOSOMAL LOCATION**

Genetic locus: WAPAL (human) mapping to 10q23.2.

## SOURCE

WAPL (A-7) is a mouse monoclonal antibody raised against amino acids 1-300 mapping at the N-terminus of WAPL of human origin.

#### PRODUCT

Each vial contains 200  $\mu g$  IgG\_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

WAPL (A-7) is available conjugated to agarose (sc-365189 AC), 500 µg/0.25 ml agarose in 1 ml, for IP; to HRP (sc-365189 HRP), 200 µg/ml, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-365189 PE), fluorescein (sc-365189 FITC), Alexa Fluor<sup>®</sup> 488 (sc-365189 AF488), Alexa Fluor<sup>®</sup> 546 (sc-365189 AF546), Alexa Fluor<sup>®</sup> 594 (sc-365189 AF594) or Alexa Fluor<sup>®</sup> 647 (sc-365189 AF647), 200 µg/ml, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor<sup>®</sup> 680 (sc-365189 AF680) or Alexa Fluor<sup>®</sup> 790 (sc-365189 AF790), 200 µg/ml, for Near-Infrared (NIR) WB, IF and FCM.

Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA

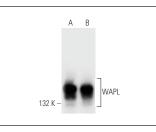
#### **APPLICATIONS**

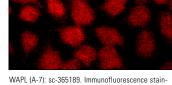
WAPL (A-7) is recommended for detection of WAPL of human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2  $\mu$ g per 100-500  $\mu$ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for WAPL siRNA (h): sc-76910, WAPL shRNA Plasmid (h): sc-76910-SH and WAPL shRNA (h) Lentiviral Particles: sc-76910-V.

Molecular Weight of WAPL: 140 kDa.

Positive Controls: Hep G2 cell lysate: sc-2227 or HeLa nuclear extract: sc-2120.


## **STORAGE**


Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

#### DATA





ing of methanol-fixed HeLa cells showing nuclear

WAPL (A-7): sc-365189. Western blot analysis of WAPL expression in HeLa nuclear extract (A) and Hep G2 whole cell lysate (B).

## **SELECT PRODUCT CITATIONS**

 Kim, J.S., et al. 2016. Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2. PLoS Genet. 12: e1005865.

Incalization

- Gong, P., et al. 2017. TAT-mediated si-hWAPL inhibits the invasion and metastasis of cervical cancer stem cells. Exp. Ther. Med. 14: 5452-5458.
- Lyu, X., et al. 2018. Architectural proteins and pluripotency factors cooperate to orchestrate the transcriptional response of hESCs to temperature stress. Mol. Cell 71: 940-955.e7.
- Kim, J.S., et al. 2019. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA binding proteins required for mitotic progression. J. Biol. Chem. 294: 8760-8772.
- Luppino, J.M., et al. 2020. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat. Genet. 52: 840-848.
- Almacellas, E., et al. 2021. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability. Autophagy 17: 796-813.
- 7. van der Weide, R.H., et al. 2021. Hi-C analyses with GENOVA: a case study with cohesin variants. NAR Genom. Bioinform. 3: Iqab040.
- Haarhuis, J.H.I., et al. 2022. A mediator-cohesin axis controls heterochromatin domain formation. Nat. Commun. 13: 754.
- van Ruiten, M.S., et al. 2022. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat. Struct. Mol. Biol. 29: 586-591.
- Yu, Z., et al. 2023. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat. Struct. Mol. Biol. 30: 436-450.

#### **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.