Tie-2 siRNA (m): sc-36678

The Power to Question

BACKGROUND

Receptor tyrosine kinases play key roles in signal transduction across cell surfaces in biological systems, including the vascular system. These receptors comprise a large and diverse family of catalytically related proteins that, on the basis of sequence and structural similarities, can be divided into several different evolutionary subfamilies. The cloning and characterization of Tie-1 (also designated Tie), a novel human endothelial cell surface receptor tyrosine kinase, has been reported. The extracellular domain of the predicted Tie-1 protein product has an unusual multidomain structure consisting of a cluster of three epidermal growth factor homology motifs localized between two immunoglobulin-like loops, which are followed by three Fibronectin type III repeats next to the transmembrane region. An additional member of this family has been identified as Tie-2 (also designated Tek). Tie-1 and Tie-2 have been shown to be encoded by distinct genes and to represent members of a new class of receptor tyrosine kinases.

REFERENCES

- 1. Pawson, T., et al. 1991. Receptor tyrosine kinases: genetic evidence for their role in *Drosophila* and mouse development. Trends Genet. 6: 350-356.
- 2. de Vries, C., et al. 1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989-991.
- Partanen, J., et al. 1992. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol. Cell. Biol. 12: 1698-1707.
- Dumont, D.J., et al. 1992. Tek, a novel tyrosine kinase gene located on mouse chromosome 4 is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471-1480.

CHROMOSOMAL LOCATION

Genetic locus: Tek (mouse) mapping to 4 C5.

PRODUCT

Tie-2 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Tie-2 shRNA Plasmid (m): sc-36678-SH and Tie-2 shRNA (m) Lentiviral Particles: sc-36678-V as alternate gene silencing products.

For independent verification of Tie-2 (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36678A, sc-36678B and sc-36678C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

Tie-2 siRNA (m) is recommended for the inhibition of Tie-2 expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

Tie-2 (3A5): sc-293414 is recommended as a control antibody for monitoring of Tie-2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz* Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz* Mounting Medium: sc-24941 or UltraCruz* Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor Tie-2 gene expression knockdown using RT-PCR Primer: Tie-2 (m)-PR: sc-36678-PR (20 μ l, 463 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- 1. Zacharek, A., et al. 2007. Angiopoietin1/Tie-2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow Metab. 27: 1684-1691.
- 2. Chen, J., et al. 2007. Niaspan increases angiogenesis and improves functional recovery after stroke. Ann. Neurol. 62: 49-58.
- Chen, J., et al. 2009. Increasing Ang-1/Tie-2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. J. Cell. Mol. Med. 13: 1348-1357.
- 4. Hakanpaa, L., et al. 2015. Endothelial destabilization by angiopoietin-2 via integrin β 1 activation. Nat. Commun. 6: 5962.

RESEARCH USE

For research use only, not for use in diagnostic procedures.