TR α siRNA (h): sc-36707

The Power to Question

BACKGROUND

Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcription factors which regulate and control many metabolic and developmental processes. There are two genes encoding TRs identified to date, TR α and TR β . TRs bind to thyroid hormone response elements (TREs) with half-site binding motifs in the orientation of palindromes, direct repeats or inverted palindromes. The affinities of binding are both variable and influenced differentially by 3,5,3'-triiodo-L-thyronine (T3). Transcriptional regulation by TRs is also modulated by heterodimerization with TR nuclear accessory proteins, the most extensively characterized of which are the retinoid X receptors (RXR α , RXR β and RXR γ). The TR α isoform TR α 1 can display both a nuclear and undefined cytoplasmic location, and is the only TR that is imported into the mitochondrial matrix. TR α 2 is a C-terminal variant of TR α 1 that does not bind thyroid hormones (THs) and weakly binds DNA. TR α 2 acts as a dominant negative antagonist of TH signalling.

REFERENCES

- Näär, A., et al. 1991. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267-1271.
- Lazar, M.A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocrinol. Rev. 14: 184-193.
- Meier, C.A., et al. 1993. Interaction of human TRβ1 and its mutants with DNA and RXRβ. T3 response element-dependent dominant negative potency. J. Clin. Invest. 92: 1986-1993.
- 4. Zhang, X.K., et al. 1993. Hetero- and homodimeric receptors in thyroid hormone and vitamin A action. Receptor 3: 183-191.
- Bhat, M.K., et al. 1994. Phosphorylation enhances the target gene sequence-dependent dimerization of thyroid hormone receptor with retinoid X receptor. Proc. Natl. Acad. Sci. USA 91: 7927-7931.
- Sugawara, A., et al. 1994. Phosphorylation selectively increases triio-dothyronine receptor homodimer binding to DNA. J. Biol. Chem. 269: 433-437.
- 7. Mangelsdorf, D.J., et al. 1994. The retinoid receptors. In Sporn, M.B., et al, eds. The Retinoids: Biology, Chemistry, and Medicine. New York: Raven Press, Ltd., 319-349.

CHROMOSOMAL LOCATION

Genetic locus: THRA (human) mapping to 17q21.1.

PRODUCT

 $TR\alpha$ siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $TR\alpha$ shRNA Plasmid (h): sc-36707-SH and $TR\alpha$ shRNA (h) Lentiviral Particles: sc-36707-V as alternate gene silencing products.

For independent verification of TR α (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36707A, sc-36707B and sc-36707C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\text{TR}\alpha$ siRNA (h) is recommended for the inhibition of $\text{TR}\alpha$ expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 $TR\alpha 1/\beta 1$ (C4): sc-740 is recommended as a control antibody for monitoring of $TR\alpha$ gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor TR α gene expression knockdown using RT-PCR Primer: TR α (h)-PR: sc-36707-PR (20 μ I, 419 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

1. Flamini, M.I., et al. 2017. Thyroid hormone controls breast cancer cell movement via integrin $\alpha_V/\beta_3/SRC/FAK/Pl3$ -kinases. Horm. Cancer 8: 16-27.

RESEARCH USE

For research use only, not for use in diagnostic procedures.