# Type II 4-phosphatase siRNA (m): sc-39093



The Power to Question

#### **BACKGROUND**

The inositol polyphosphate 4-phosphatases selectively remove the phosphate from the 4-position of various phosphatidylinositols, which generate second messengers in response to extracellular signals. Both the Type I and Type II 4-phosphatases catalyze the hydrolysis of phosphatidylinositol 3,4-bisphosphate, inositol 1,3,4-trisphosphate, and inositol 3,4-bisphosphate. Type I and Type II 4-phosphatases are both alternatively spliced into two isoforms,  $\alpha$  and  $\beta$ , which have been detected in human platelets, rat brain, heart, skeletal muscle and spleen; and all isoforms contain a conserved motif CKSAKDRT, which contains the active site consensus sequence C-X5-R. Both Type I and II 4-phosphatases are thought to regulate the level of intracellular calcium by acting as signal terminating enzymes.

# **REFERENCES**

- 1. Bansal, V.S., et al. 1990. The isolation and characterization of inositol polyphosphate 4-phosphatase. J. Biol. Chem. 265: 1806-1811.
- Norris, F.A., et al. 1995. The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J. Biol. Chem. 270: 16128-16133.
- Norris, F.A., et al. 1997. Inositol polyphosphate 4-phosphatase is inactivated by calpain-mediated proteolysis in stimulated human platelets. J. Biol. Chem. 272: 10987-10989.
- 4. Norris, F.A., et al. 1997. The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J. Biol. Chem. 272: 23859-23864.

# CHROMOSOMAL LOCATION

Genetic locus: Inpp4b (mouse) mapping to 8 C2.

# **PRODUCT**

Type II 4-phosphatase siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10  $\mu$ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Type II 4-phosphatase shRNA Plasmid (m): sc-39093-SH and Type II 4-phosphatase shRNA (m) Lentiviral Particles: sc-39093-V as alternate gene silencing products.

For independent verification of Type II 4-phosphatase (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-39093A, sc-39093B and sc-39093C.

# STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$  C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$  C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330  $\mu$ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330  $\mu$ l of RNAse-free water makes a 10  $\mu$ M solution in a 10  $\mu$ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

#### **APPLICATIONS**

Type II 4-phosphatase siRNA (m) is recommended for the inhibition of Type II 4-phosphatase expression in mouse cells.

# **SUPPORT REAGENTS**

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

# **RT-PCR REAGENTS**

Semi-quantitative RT-PCR may be performed to monitor Type II 4-phosphatase gene expression knockdown using RT-PCR Primer: Type II 4-phosphatase (m)-PR: sc-39093-PR (20  $\mu$ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

#### **SELECT PRODUCT CITATIONS**

1. Ota, H., et al. 2010. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler. Thromb. Vasc. Biol. 30: 2205-2211.

# **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

#### **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com