TSHβ siRNA (h): sc-39321 The Power to Question #### **BACKGROUND** Various hormones are secreted from the anterior pituitary during development and growth, including thyroid-stimulating hormone (TSH, also known as thyrotropin), follicle-stimulating hormone (FSH) and leutinizing hormone (LH). TSH, FSH, and LH are heterodimers formed from a common α chain and a unique β chain. TSH is a glycoprotein involved in the control of thyroid structure and metabolism, which stimulates the release of the thyroid hormones. TSH β is regulated by thyroid hormone (T3) and various retinoid compounds. TSH β binds to the thyroid-stimulating hormone receptor (TSHR), which plays a major role in regulating thyroid function. TSHR is thought to exist in multiple glycosylation states. The third cytoplasmic loop of TSHR has been identified as critical for its role in regulating inositol phosphate and cAMP formation. # **REFERENCES** - Kosugi, S., et al. 1993. Substitutions of different regions of the third cytoplasmic loop of the thyrotropin (TSH) receptor have selective effects on constitutive, TSH-, and TSH receptor autoantibody-stimulated phosphoinositide and 3',5'-cyclic adenosine monophosphate signal generation. Mol. Endocrinol. 7: 1009-1020. - Graves, P.N., et al. 1996. Multimeric complex formation by the thyrotropin receptor in solubilized thyroid membranes. Endocrinology 137: 3915-3920. - Sanders, J., et al. 1997. Understanding the thyrotropin receptor functionstructure relationship. Baillieres Clin. Endocrinol. Metab. 11: 451-479. - Breen, J.J., et al. 1997. The rat TSHβ gene contains distinct response elements for regulation by retinoids and thyroid hormone. Mol. Cell. Endocrinol. 131: 137-146. - 5. Moyle, W.R., et al. 1998. Functional homodimeric glycoprotein hormones: implications for hormone action and evolution. Chem. Biol. 5: 241-254. - 6. Sasaki, S., et al. 1999. Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin β gene. EMBO J. 18: 5389-5398. - 7. Okada, R., et al. 2000. Cloning of bullfrog thyroid-stimulating hormone (TSH) β subunit cDNA: expression of TSH β mRNA during metamorphosis. Gen. Comp. Endocrinol. 119: 224-231. ## CHROMOSOMAL LOCATION Genetic locus: TSHB (human) mapping to 1p13.2. ## **PRODUCT** TSH β siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see TSH β shRNA Plasmid (h): sc-39321-SH and TSH β shRNA (h) Lentiviral Particles: sc-39321-V as alternate gene silencing products. For independent verification of TSH β (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-39321A, sc-39321B and sc-39321C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** $TSH\beta$ siRNA (h) is recommended for the inhibition of $TSH\beta$ expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** TSH β (D-6): sc-365801 is recommended as a control antibody for monitoring of TSH β gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor TSH β gene expression knockdown using RT-PCR Primer: TSH β (h)-PR: sc-39321-PR (20 µI). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**