EDG-4 siRNA (h): sc-39926 The Power to Question # **BACKGROUND** The EDG (endothelial differentiation gene) family of G protein-coupled receptors consists of eight family members that bind lysophospholipid (LPL) mediators, including sphingosine-1-phosphate (SPP) and lysophosphatidic acid (LPA). EDG-1, EDG-3, EDG-5 (also designated H218 and AGR16) and EDG-8 bind SPP with high affinity. EDG-6 is a low affinity receptor for SPP. LPA preferentially binds to EDG-2, EDG-4 and EDG-7. The EDG receptors couple to multiple G proteins to signal through Ras, MAP kinase, Rho, Phospholipase C or other tyrosine kinases, which lead to cell survival, growth, migration and differentiation. EDG-1 signals through $\rm G_i$ proteins to activate Akt and is expressed in glioma cells. EDG-2 is expressed in brain, especially in white matter tract regions, while EDG-3 is expressed in cardiovascular tissue and in cerebellum. EDG-4 is highly expressed on leukocytes and brain, and EDG-5 has wide tissue distribution, including cardiovascular tissue and brain. EDG-6, which is expressed in lymphoid and hematopoietic tissues and in lung, signals through $\rm G_{i/o}$ proteins, which activate growth related pathways. # **REFERENCES** - Goetzl, E.J., et al. 1999. A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids. Adv. Exp. Med. Biol. 469: 259-264. - Van Brocklyn, J.R., et al. 2000. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95: 2624-2629. - Sato, K., et al. 2000. Differential roles of EDG-1 and EDG-5, sphingosine 1phosphate receptors, in the signaling pathways in C6 glioma cells. Brain Res. Mol. Brain Res. 85: 151-160. #### CHROMOSOMAL LOCATION Genetic locus: LPAR2 (human) mapping to 19p13.11. # **PRODUCT** EDG-4 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see EDG-4 shRNA Plasmid (h): sc-39926-SH and EDG-4 shRNA (h) Lentiviral Particles: sc-39926-V as alternate gene silencing products. For independent verification of EDG-4 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-39926A, sc-39926B and sc-39926C. # STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### **APPLICATIONS** $\ensuremath{\mathsf{EDG-4}}$ siRNA (h) is recommended for the inhibition of EDG-4 expression in human cells. # **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. # **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor EDG-4 gene expression knockdown using RT-PCR Primer: EDG-4 (h)-PR: sc-39926-PR (20 μ l, 504 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **SELECT PRODUCT CITATIONS** - Chen, S.U., et al. 2008. Lysophosphatidic acid up-regulates expression of interleukin-8 and -6 in granulosa-lutein cells through its receptors and nuclear factor-κB dependent pathways: implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome. J. Clin. Endocrinol. Metab. 93: 935-943. - 2. Chen, S.U., et al. 2010. Lysophosphatidic acid up-regulates expression of growth-regulated oncogene- α , interleukin-8, and monocyte chemoattractant protein-1 in human first-trimester trophoblasts: possible roles in angiogenesis and immune regulation. Endocrinology 151: 369-379. - Chen, R.J., et al. 2012. Lysophosphatidic acid receptor 2/3-mediated IL-8-dependent angiogenesis in cervical cancer cells. Int. J. Cancer 131: 789-802 - 4. Cai, Ω ., et al. 2012. Elevated and secreted phospholipase A_2 activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J. 26: 3306-3320. - Li, M., et al. 2016. Expression of LPA2 is associated with poor prognosis in human breast cancer and regulates HIF-1α expression and breast cancer cell growth. Oncol. Rep. 36: 3479-3487. # **RESEARCH USE** For research use only, not for use in diagnostic procedures. ### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com