γB-crystallin siRNA (m): sc-40453

The Power to Question

BACKGROUND

Crystallins, the major proteins of the vertebrate eye lens, are responsible for maintaining the transparency and the refractive index of the lens. Crystallins are divided into $\alpha,\,\beta,$ and γ families, all of which usually contain seven distinctive protein regions, including four homologous motifs, one connecting peptide and N- and C-terminal extensions. The γ -crystallin family is comprised of seven closely related proteins designated γA -, γB -, γC -, γD -, γE -, γF - and γG -crystallin. γB -crystallin, also known as CRYGB or CRYG2, is a 175 amino acid member of the γ -crystallin family. Functioning as a monomer that has a two-domain β fold, γB -crystallin, like other members of its family, plays a key role in ensuring the proper structure of the vertebrate eye lens. Defects in the gene encoding γB -crystallin are associated with the formation of cataracts which are characterized by a clouding of the crystalline lens of the eye.

REFERENCES

- 1. Brakenhoff, R.H., et al. 1990. Human γ -crystallin genes. A gene family on its way to extinction. J. Mol. Biol. 216: 519-532.
- 2. Hearne, C.M., et al. 1991. Trinucleotide repeat polymorphism at the CRYG1 locus. Nucleic Acids Res. 19: 5450.
- 3. Rogaev, E.I., et al. 1996. Linkage of polymorphic congenital cataract to the γ -crystallin gene locus on human chromosome 2q33-35. Hum. Mol. Genet. 5: 699-703.
- 4. Graw, J. 1997. The crystallins: genes, proteins and diseases. Biol. Chem. 378: 1331-1348.
- 5. Stöger, T., et al. 1997. The Cryner element in the murine γ -crystallin promoters interacts with lens proteins. Ophthalmic Res. 29: 161-171.
- 6. Santhiya, S.T., et al. 2002. Novel mutations in the γ -crystallin genes cause autosomal dominant congenital cataracts. J. Med. Genet. 39: 352-358.
- 7. Salim, A., et al. 2003. Homology models of human γ -crystallins: structural study of the extensive charge network in γ -crystallins. Biochem. Biophys. Res. Commun. 300: 624-630.
- Messina-Baas, O.M., et al. 2006. Two affected siblings with nuclear cataract associated with a novel missense mutation in the CRYGD gene. Mol. Vis. 12: 995-1000.

CHROMOSOMAL LOCATION

Genetic locus: Crygb (mouse) mapping to 1 C2.

PRODUCT

 γB -crystallin siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see γB -crystallin shRNA Plasmid (m): sc-40453-SH and γB -crystallin shRNA (m) Lentiviral Particles: sc-40453-V as alternate gene silencing products.

For independent verification of γB -crystallin (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-40453A, sc-40453B and sc-40453C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\gamma B\text{-}crystallin\ siRNA\ (m)\ is\ recommended\ for\ the\ inhibition\ of\ }\gamma B\text{-}crystallin\ expression\ in\ mouse\ cells.}$

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 γ B-crystallin (D-5): sc-377056 is recommended as a control antibody for monitoring of γ B-crystallin gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor γ B-crystallin gene expression knockdown using RT-PCR Primer: γ B-crystallin (m)-PR: sc-40453-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com