SANTA CRUZ BIOTECHNOLOGY, INC.

γD-crystallin siRNA (m): sc-40457

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into α , β , and γ families, and the β and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide, and N- and C-terminal extensions. γ -crystallins are structural proteins in the lens, and they exists as monomers which typically lack connecting peptides and terminal extensions. The γ -crystallins include seven closely related proteins, namely γA -, γB -, γC -, γD -, γE -, γF -, and γG -crystallin, as well as the γN and γS -crystallin proteins. The γ -crystallins are differentially regulated after early development, and are involved in cataract formation as a result of either age-related protein degradation or genetic mutation.

REFERENCES

- Srivastava, O.P., et al. 1998. Degradation of γD- and γs-crystallins in human lenses. Biochem. Biophys. Res. Commun. 253: 288-294.
- Srivastava, O.P., et al. 1998. Purification of γ-crystallin from human lenses by acetone precipitation method. Curr. Eye Res. 17: 1074-1081.
- 3. Klok, E.J., et al. 1998. Regulation of expression within a gene family. The case of the rat γ B- and γ D-crystallin promoters. J. Biol. Chem. 273: 17206-17215.
- 4. Stephan, D.A., et al. 1999. Progressive juvenile-onset punctate cataracts caused by mutation of the γ D-crystallin gene. Proc. Natl. Acad. Sci. USA 96: 1008-1012.
- Jaenicke, R., et al. 2001. Lens crystallins and their microbial homologs: structure, stability, and function. Crit. Rev. Biochem. Mol. Biol. 36: 435-499.
- Pande, A., et al. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl. Acad. Sci. USA 98: 6116-6120.
- 7. Wang X, et al. 2004. Expression and regulation of α -, β -, and γ -crystallins in mammalian lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 45: 3608-3619.
- 8. LocusLink Report (LocusID: 1420). http://www.ncbi.nlm.nih.gov/LocusLink

CHROMOSOMAL LOCATION

Genetic locus: Crygd (mouse) mapping to 1 C2.

PRODUCT

 γD -crystallin siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see γD -crystallin shRNA Plasmid (m): sc-40457-SH and γD -crystallin shRNA (m) Lentiviral Particles: sc-40457-V as alternate gene silencing products.

For independent verification of γ D-crystallin (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-40457A, sc-40457B and sc-40457C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 γ D-crystallin siRNA (m) is recommended for the inhibition of γ D-crystallin expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 γ D-crystallin (SB-18): sc-100697 is recommended as a control antibody for monitoring of γ D-crystallin gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgG κ BP-HRP: sc-516102 or m-IgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor γ D-crystallin gene expression knockdown using RT-PCR Primer: γ D-crystallin (m)-PR: sc-40457-PR (20 µl). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.