γN-crystallin siRNA (m): sc-40463

The Power to Question

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into α , β and γ families, and the β - and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide, and N- and C-terminal extensions. γ -crystallins are structural proteins in the lens, and they exists as monomers, which typically lack connecting peptides and terminal extensions. The γ -crystallins include seven closely related proteins designated γ A-, γ B-, γ C-, γ D-, γ E-, γ F-, and γ G-crystallin, which all map to human chromosome 2q33. This family also includes the γ N- and γ S-crystallins genes, which map to human chromosomes 7 and 3, respectively. The γ -crystallins are differentially regulated after early development, and are involved in cataract formation as a result of either age-related protein degradation or genetic mutation.

REFERENCES

- Srivastava, O.P. and Srivastava, K. 1998. Purification of γ-crystallin from human lenses by acetone precipitation method. Curr. Eye Res. 17: 1074-1081.
- Klok, E.J., van Genesen, S.T., Civil, A., Schoenmakers, J.G. and Lubsen, N.H. 1998. Regulation of expression within a gene family. The case of the rat γB- and γD-crystallin promoters. J. Biol. Chem. 273: 17206-17215.
- 3. Srivastava, O.P. and Srivastava, K. 1998. Degradation of γ D- and γ S-crystallins in human lenses. Biochem. Biophys. Res. Commun. 253: 288-294.
- Stephan, D.A., Gillanders, E., Vanderveen, D., Freas-Lutz, D., Wistow, G., Baxevanis, A.D., Robbins, C.M., VanAuken, A., Quesenberry, M.I., Bailey-Wilson, J., Juo, S.H., Trent. J.M., Smith, L. and Brownstein, M.J. 1999. Progressive juvenile-onset punctate cataracts caused by mutation of the γD-crystallin gene. Proc. Natl. Acad. Sci. USA 96: 1008-1012.
- Jaenicke, R. and Slingsby, C. 2001. Lens crystallins and their microbial homologs: structure, stability, and function. Crit. Rev. Biochem. Mol. Biol. 36: 435-499.
- Pande, A., Pande, J., Asherie, N., Lomakin, A., Ogun, O., King, J. and Benedek, G.B. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl. Acad. Sci. USA 98: 6116-6120.
- 7. LocusLink Report (LocusID: 1427). http://www.ncbi.nlm.nih. gov/LocusLink

CHROMOSOMAL LOCATION

Genetic locus: Crygn (mouse) mapping to 5 A3.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

PRODUCT

 γN -crystallin siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see γN -crystallin shRNA Plasmid (m): sc-40463-SH and γN -crystallin shRNA (m) Lentiviral Particles: sc-40463-V as alternate gene silencing products.

For independent verification of γN -crystallin (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-40463A, sc-40463B and sc-40463C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 γN -crystallin siRNA (m) is recommended for the inhibition of γN -crystallin expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor γN -crystallin gene expression knockdown using RT-PCR Primer: γN -crystallin (m)-PR: sc-40463-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com