$G_{\gamma 2}$ siRNA (m): sc-41775

The Power to Questio

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to intracellular effectors. Each of a very broad range of receptors specifically detects an extracellular stimulus (i.e., a photon, pheromone, odorant, hormone or neurotransmitter), while the effectors (e.g., adenyl cyclase), which act to generate one or more intracellular messengers, are less numerous. In mammals, G protein α , β and γ polypeptides are encoded by at least 16, 4 and 7 genes, respectively. Most interest in G proteins has been focused on their α subunits, since these proteins bind and hydrolyze GTP and most obviously regulate the activity of the best studied effectors. Evidence, however, has established an important regulatory role for the $\beta\gamma$ subunits. It is becoming increasingly clear that different G protein complexes expressed in different tissues carry structurally distinct members of the γ as well as the α and β subunits, and that preferential associations between members of subunit families increase G protein functional diversity.

REFERENCES

- 1. Gautam, N., et al. 1990. G protein diversity is increased by associations with a variety of γ subunits. Proc. Natl. Acad. Sci. USA 87: 7973-7977.
- Simon, M.I., et al. 1991. Diversity of G proteins in signal transduction. Science 252: 802-808.
- 3. von Weizsäcker, E., et al. 1992. Diversity among the β subunits of heterotrimeric GTP-binding proteins: characterization of a novel β -subunit cDNA. Biochem. Biophys. Res. Commun. 183: 350-356.
- Kleuss, C., et al. 1992. Different β-subunits determine G protein interaction with transmembrane receptors. Nature 358: 424-426.
- Blank, J.L., et al. 1992. Activation of cytosolic phosphoinositide phospholipase C by G protein βγ subunits. J. Biol. Chem. 267: 23069-23075.
- 6. lñiguez-Lluhi, J.A., et al. 1992. G protein $\beta\gamma$ subunits sythesized in Sf9 cells. J. Biol. Chem. 267: 23409-23417.
- Cali, J.J., et al. 1992. Selective tissue distribution of G protein γ subunits, including a new form of the γ subunits identified by cDNA cloning. J. Biol. Chem. 267: 24023-24027.
- 8. Conklin, B.R. and Bourne, H.R. 1993. Structural elements of G_{α} subunits that interact with $G_{\alpha,\nu}$, receptors, and effectors. Cell 73: 631-641.

CHROMOSOMAL LOCATION

Genetic locus: Gng2 (mouse) mapping to 14 A3.

PRODUCT

 $G_{\gamma\,2}$ siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $G_{\gamma\,2}$ shRNA Plasmid (h): sc-41774-SH and $G_{\gamma\,2}$ shRNA (h) Lentiviral Particles: sc-41774-V as alternate gene silencing products.

For independent verification of $G_{\gamma\,2}$ (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-41774A, sc-41774B and sc-41774C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\text{G}_{\gamma\,2}$ siRNA (m) is recommended for the inhibition of $\text{G}_{\gamma\,2}$ expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 $G_{\gamma\,2/3/4/7}$ (C-5): sc-166419 is recommended as a control antibody for monitoring of $G_{\gamma\,2}$ gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor $G_{\gamma\,2}$ gene expression knockdown using RT-PCR Primer: $G_{\gamma\,2}$ (m)-PR: sc-41775-PR (20 µl). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**