HNF-1β siRNA (h2): sc-43839 The Power to Question ## **BACKGROUND** HNF-1 (α and β), HNF-3 (α , β and γ), HNF-4 (α and γ) and HNF-6 compose, in part, a homoeprotein family designated the Hepatocyte Nuclear Factor family. The various HNF-1 isoforms regulate transcription of genes in liver and in other tissues such as kidney, small intestine and thymus. HNF-3 α , HNF-3 β and HNF-3 γ regulate the transcription of numerous hepatocyte genes in adult liver. HNF-3 α and HNF-3 β have also been shown to be involved in gastrulation events such as body axis formation. HNF-4 α and HNF-4 γ have been shown to be important for early embryo development. HNF-4 α is expressed in liver, kidney, pancreas, small intestine, testis and colon; and HNF-4 γ is expressed in each of these tissues except liver. HNF-6 has been shown to bind to the promoter of HNF-3 β , which indicates a potential role of HNF-6 in gut endoderm epithelial cell differentiation. Evidence suggests that HNF-6 may also be a transriptional activator for at least 22 other hepatocyte-enriched genes, including cytochrome P450 2C13 and α -1 antitrypsin. # **REFERENCES** - Bach, I., et al. 1993. More potent transcriptional activators or a transdominant inhibitor of the HNF-1 homeoprotein family are generated by alternative RNA processing. EMBO J. 12: 4229-4242. - Kaestner, K.H., et al. 1994. The HNF-3 gene family of transcription factors in mice gene structure, cDNA sequence, and mRNA distribution. Genomics 20: 377-385. - Drewes, T., et al. 1996. Human hepatocyte nuclear factor-4 isoforms are encoded by distinct and differentially expressed genes. Mol. Cell. Biol. 16: 925-931. - Samadani, U., et al. 1996. The transcriptional activator hepatocyte nuclear factor-6 regulates liver gene expression. Mol. Cell. Biol. 16: 6273-6284. - 5. Lebrun, G., et al. 2005. Cystic kidney disease, chromophobe renal cell carcinoma and TCF2 (HNF-1 β) mutations. Nat. Clin. Pract. Nephrol. 1: 115-119. - 6. Edghill, E.L., et al. 2006. Hepatocyte nuclear factor- 1β mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF- 1β in human pancreatic development. Diabet. Med. 23: 1301-1306. ## CHROMOSOMAL LOCATION Genetic locus: HNF1B (human) mapping to 17q12. #### **PRODUCT** HNF-1 β siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see HNF-1 β shRNA Plasmid (h2): sc-43839-SH and HNF-1 β shRNA (h2) Lentiviral Particles: sc-43839-V as alternate gene silencing products. For independent verification of HNF-1 β (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-43839A, sc-43839B and sc-43839C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** HNF-1 β siRNA (h2) is recommended for the inhibition of HNF-1 β expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** HNF-1 β (94.8): sc-130407 is recommended as a control antibody for monitoring of HNF-1 β gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor gene HNF-1 β expression knockdown using RT-PCR Primer: HNF-1 β (h2)-PR: sc-43839-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products.