c-Abl siRNA (h2): sc-44290

The Power to Question

BACKGROUND

The Abl oncogene was initially identified as the viral transforming gene of Abelson murine leukemia virus (A-MuLV). The major translational product of c-Abl has been identified as a protein with tyrosine kinase activity and an SH2 domain. The Abl oncogene is implicated in several human leukemias including 90-95% of chronic myelocytic leukemia (CML), 20-25% of adult acute lymphoblastic leukemia (ALL) and 2-5% of pediatric ALL. In these leukemias the c-Abl proto-oncogene undergoes a chromosomal translocation producing the Philadelphia (Ph1) chromosome. The molecular consequence of this translocation is the generation of a chimeric Bcr/c-Abl mRNA encoding activated Abl protein-tyrosine kinase. The Bcr gene has been shown to encode a GTPase-activating protein (GAP) specific for the Ras-related GTP-binding protein, p21Rac.

REFERENCES

- Abelson, H.T., et al. 1970. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res. 30: 2213-2222.
- de Klein, A., et al. 1982. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300: 765-767.
- Prywes, R., et al. 1983. Sequences of the A-MuLV protein needed for fibroblasts and lymphoid cell transformation. Cell 34: 569-579.
- Konopka, J.B., et al. 1984. An alteration of the human c-Abl protein in K-562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035-1042.
- Stam, K., et al. 1985. Evidence of a new chimeric Bcr/c-Abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313: 1429-1433.
- 6. Diekmann, D., et al. 1991. Bcr encodes a GTPase-activating protein for p21Rac. Nature 351: 400-402.
- 7. Overduin, M., et al. 1992. Three-dimensional solution structure of the Src homology 2 domain of c-Abl. Cell 70: 697-704.

CHROMOSOMAL LOCATION

Genetic locus: ABL1 (human) mapping to 9q34.12.

PRODUCT

c-Abl siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see c-Abl shRNA Plasmid (h2): sc-44290-SH and c-Abl shRNA (h2) Lentiviral Particles: sc-44290-V as alternate gene silencing products.

For independent verification of c-Abl (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-44290A, sc-44290B and sc-44290C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

c-Abl siRNA (h2) is recommended for the inhibition of c-Abl expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

c-Abl (8E9): sc-56887 is recommended as a control antibody for monitoring of c-Abl gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor c-Abl gene expression knockdown using RT-PCR Primer: c-Abl (h2)-PR: sc-44290-PR (20 μ l, 470 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.