3β-HSD siRNA (m): sc-44470

The Boures to Overtion

BACKGROUND

 3β -hydroxysteroid dehydrogenase (3β -HSD), also known as HSD3B1 or HSDB3, is a bifunctional enzyme that plays a crucial role in the synthesis of all classes of hormonal steroids. Two human 3β -HSD proteins, designated type I (3β -HSD) and type II (3β -HSD2), are expressed by different genes and function in different areas of the body. Localized to the membrane of the endoplasmic reticulum (ER) and expressed in skin and placenta, 3β -HSD is the type I protein that catalyzes the oxidative conversion of δ5-ene-3- β -hydroxy steroid, as well as the conversion of various ketosteroids. Defects in the gene encoding 3β -HSD are associated with classic salt wasting, genital ambiguity, hypogonadism, Insulin-resistant polycystic ovary syndrome (PCOS) and an increased susceptibility to prostate cancer. Additionally, congenital deficiency of 3β -HSD activity results in a severe depletion of steroid formation which can be lethal in young children.

REFERENCES

- 1. Thomas, J.L., et al. 2002. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3β -hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J. Biol. Chem. 277: 42795-42801.
- Thomas, J.L., et al. 2003. Structure/function relationships responsible for coenzyme specificity and the isomerase activity of human type 1 3β-hydroxysteroid dehydrogenase/isomerase. J. Biol. Chem. 278: 35483-35490.
- Foti, D.M. and Reichardt, J.K. 2004. YY1 binding within the human HSD3B2 gene intron 1 is required for maximal basal promoter activity: identification of YY1 as the 3β1-A factor. J. Mol. Endocrinol. 33: 99-119.
- 4. Thomas, J.L., et al. 2004. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3β -hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 33: 253-261.
- Carbunaru, G., et al. 2004. The hormonal phenotype of Nonclassic 3β-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J. Clin. Endocrinol. Metab. 89: 783-794.
- 6. Thomas, J.L., et al. 2007. Structure/function of human type 1 3β-hydrox-ysteroid dehydrogenase: an intrasubunit disulfide bond in the Rossmann-fold domain and a Cys residue in the active site are critical for substrate and coenzyme utilization. J. Steroid Biochem. Mol. Biol. 107: 80-87.
- 7. Wang, L., et al. 2007. Human 3β -hydroxysteroid dehydrogenase types 1 and 2: gene sequence variation and functional genomics. J. Steroid Biochem. Mol. Biol. 107: 88-99.
- 8. Park, J.Y., et al. 2007. Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk. Urology 70: 374-379.
- 9. Mao, T.L., et al. 2008. HSD3B1 as a novel trophoblast-associated marker that assists in the differential diagnosis of trophoblastic tumors and tumorlike lesions. Am. J. Surg. Pathol. 32: 236-242.

CHROMOSOMAL LOCATION

Genetic locus: Hsd3b1 (mouse) mapping to 3 F2.2.

PRODUCT

 $3\beta\text{-HSD}$ siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $3\beta\text{-HSD}$ shRNA Plasmid (m): sc-44470-SH and $3\beta\text{-HSD}$ shRNA (m) Lentiviral Particles: sc-44470-V as alternate gene silencing products.

For independent verification of 3β -HSD (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-44470A, sc-44470B and sc-44470C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $3\beta\text{-HSD}$ siRNA (m) is recommended for the inhibition of $3\beta\text{-HSD}$ expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor 3 β -HSD gene expression knockdown using RT-PCR Primer: 3 β -HSD (m)-PR: sc-44470-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com