# elF2Bε (H-9): sc-514056



The Power to Question

## **BACKGROUND**

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. The eukaryotic initiation complex elF2B exists as a five subunit complex composed of elF2B $\alpha$ , elF2B $\beta$ , elF2B $\gamma$ , elF2B $\delta$  and elF2B $\epsilon$ . The elF2B complex catalyzes the exchange of GDP for GTP on the elF2 complex following the interaction of elF2/GTP with the 40S ribosomal subunit. Guanine nucleotide exchange factor (GEF) activity is exhibited by the elF2B $\epsilon$  subunit alone, but is greater in the presence of all five elF2B subunits. Phosphorylation of elF2 inhibits GEF activity of elF2B, an inhibition that requires the elF2B $\alpha$  subunit.

# **REFERENCES**

- 1. Henderson, R.A., et al. 1994. The  $\delta$  subunit of murine guanine nucleotide exchange factor eIF2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. J. Biol. Chem. 269: 30517-30523.
- 2. Flowers, K.M., et al. 1995. Structure and sequence of the gene encoding the  $\alpha$  subunit of rat translation initiation factor-2B. Biochim. Biophys. Acta 1264: 163-167.
- Price, N.T., et al. 1996. Cloningof cDNA for the γ subunit of mammalian translation initiation factor 2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Biochem. J. 318: 631-636.
- 4. Price, N.T., et al. 1996. eIF2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Sequence conservation between the  $\alpha$ ,  $\beta$  and  $\delta$  subunits of eIF2B from mammals and yeast. Biochem. J. 318: 637-643.
- 5. Asuru, A.I., et al. 1996. Cloning and characterization of cDNAs encoding the  $\epsilon$  subunit of eukaryotic initiation factor-2B from rabbit and human. Biochim. Biophys. Acta 1307: 309-317.
- Webb, B.L., et al. 1997. Eukaryotic initiation factor 2B (eIF2B). Int. J. Biochem. Cell Biol. 29: 1127-1131.

# **CHROMOSOMAL LOCATION**

Genetic locus: EIF2B5 (human) mapping to 3q27.1; Eif2b5 (mouse) mapping to 16 A3.

## **SOURCE**

elF2B $\epsilon$  (H-9) is a mouse monoclonal antibody specific for an epitope mapping between amino acids 44-64 near the N-terminus of elF2B $\epsilon$  of human origin.

#### **PRODUCT**

Each vial contains 200  $\mu$ g IgG<sub>1</sub> kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-514056 P, (100  $\mu$ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% stabilizer protein).

#### **STORAGE**

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## **APPLICATIONS**

elF2B $\epsilon$  (H-9) is recommended for detection of elF2B $\epsilon$  of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2  $\mu$ g per 100-500  $\mu$ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for eIF2B $\epsilon$  siRNA (h): sc-35278, eIF2B $\epsilon$  siRNA (m): sc-35279, eIF2B $\epsilon$  shRNA Plasmid (h): sc-35278-SH, eIF2B $\epsilon$  shRNA Plasmid (m): sc-35279-SH, eIF2B $\epsilon$  shRNA (h) Lentiviral Particles: sc-35278-V and eIF2B $\epsilon$  shRNA (m) Lentiviral Particles: sc-35279-V.

Molecular Weight of elF2Bε: 90 kDa.

Positive Controls: K-562 whole cell lysate: sc-2203, MOLT-4 cell lysate: sc-2233 or HeLa whole cell lysate: sc-2200.

# **RECOMMENDED SUPPORT REAGENTS**

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG $\kappa$  BP-HRP: sc-516102 or m-lgG $\kappa$  BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker<sup>TM</sup> Molecular Weight Standards: sc-2035, UltraCruz\* Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG $\kappa$  BP-FITC: sc-516140 or m-lgG $\kappa$  BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz\* Mounting Medium: sc-24941 or UltraCruz\* Hard-set Mounting Medium: sc-359850.

# DATA







eIF2B $\epsilon$  (H-9): sc-514056. Western blot analysis of eIF2B $\epsilon$  expression in HeLa (**A**), Hep G2 (**B**) and IB4 (**C**) whole cell lysates and rat kidney tissue extract (**D**).

# SELECT PRODUCT CITATIONS

- 1. Moon, S.L. and Parker, R. 2018. elF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response. RNA 24: 841-852.
- Keefe, M.D., et al. 2020. Vanishing white matter disease expression of truncated EIF2B5 activates induced stress response. Elife 9: e56319.

# **RESEARCH USE**

For research use only, not for use in diagnostic procedures.