
SANTA CRUZ BIOTECHNOLOGY, INC.

γ-crystallin (F-4): sc-514201

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into α , β , and γ families, and the β and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide, and N- and C-terminal extensions. γ -crystallins are structural proteins in the lens, and they exists as monomers which typically lack connecting peptides and terminal extensions. The γ -crystallins include seven closely related γA , γB , γC , γD , γE , γF , and γG -crystallin, as well as the γN and γS -crystallin genes. The γ -crystallins are differentially regulated after early development, and are involved in cataract formation as a result of either age-related protein degradation or genetic mutation.

REFERENCES

- 1. Srivastava, O.P. and Srivastava, K. 1998. Purification of γ -crystallin from human lenses by acetone precipitation method. Curr. Eye Res. 17: 1074-1081.
- Klok, E.J., van Genesen, S.T., Civil, A., Schoenmakers, J.G. and Lubsen, N.H. 1998. Regulation of expression within a gene family. The case of the rat γB- and γD-crystallin promoters. J. Biol. Chem. 273: 17206-17215.
- 3. Srivastava, O.P. and Srivastava, K. 1998. Degradation of γD- and γS-crystallins in human lenses. Biochem. Biophys. Res. Commun. 253: 288-294.
- Stephan, D.A., Gillanders, E., Vanderveen, D., Freas-Lutz, D., Wistow, G., Baxevanis, A.D., Robbins, C.M., VanAuken, A., Quesenberry, M.I., Bailey-Wilson, J., Juo, S.H., Trent. J.M., Smith, L. and Brownstein, M.J. 1999. Progressive juvenile-onset punctate cataracts caused by mutation of the γD-crystallin gene. Proc. Natl. Acad. Sci. USA 96: 1008-1012.
- Pande, A., Pande, J., Asherie, N., Lomakin, A., Ogun, O., King, J. and Benedek, G.B. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl. Acad. Sci. USA 98: 6116-6120.
- Jaenicke, R. and Slingsby, C. 2001. Lens crystallins and their microbial homologs: structure, stability, and function. Crit. Rev. Biochem. Mol. Biol. 36: 435-499.
- 7. Wang, X., Garcia, C.M., Shui, Y.B. and Beebe, D.C. 2004. Expression and regulation of α -, β -, and γ -crystallins in mammalian lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 45: 3608-3619.
- 8. LocusLink Report (LocusID: 1420). http://www.ncbi.nlm.nih.gov/LocusLink

SOURCE

 γ -crystallin (F-4) is a mouse monoclonal antibody raised against amino acids 22-75 mapping near the N-terminus of γ A-crystallin of human origin.

PRODUCT

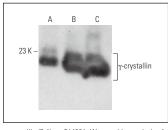
Each vial contains 200 $\mu g\, lgG_1$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

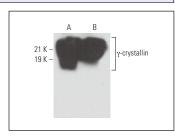
RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

 γ -crystallin (F-4) is recommended for detection of γ A-crystallin, γ B-crystallin and γ C-crystallin of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


Molecular Weight of y-crystallin: 20 kDa.


Positive Controls: human eye extract: sc-364223, rat eye extract: sc-364805 or mouse eye extract: sc-364241.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgG κ BP-HRP: sc-516102 or m-IgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

DATA

 $\gamma\text{-}crystallin$ (F-4): sc-514201. Western blot analysis of $\gamma\text{-}crystallin$ expression in human eye (**A**), rat eye (**B**) and mouse eye (**C**) tissue extracts.

 $\gamma\text{-crystallin}$ (F-4): sc-514201. Western blot analysis of $\gamma\text{-crystallin}$ expression in rat eye (**A**) and mouse eye (**B**) tissue extracts.

SELECT PRODUCT CITATIONS

 Thompson, B., et al. 2021. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocul. Surf. 22: 190-203.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.