elF3ε (H-4): sc-514292 The Power to Question # **BACKGROUND** The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. Eukaryotic initiation factors (elFs) are utilized in a sequence of reactions that lead to 80S ribosomal assembly and, ultimately, translation. The eukaryotic initiation factor-3 (elF3) scaffolding structure is the largest of the elF complexes and includes elF3 α , elF3 β , elF3 γ , elF3 β elF # **REFERENCES** - Valásek, L., et al. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24: 9437-9455. - Peterson, T.R. and Sabatini, D.M. 2005. eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol. Cell 20: 655-657. - Dong, Z. and Zhang, J.T. 2006. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol. 59: 169-180. - 4. LeFebvre, A.K., et al. 2006. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3ε subunit. J. Biol. Chem. 281: 22917-22932. - Hinnebusch, A.G. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31: 553-562. - Masutani, M., et al. 2007. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26: 3373-3383. - Zhang, L., et al. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282: 5790-5800. # **CHROMOSOMAL LOCATION** Genetic locus: EIF3F (human) mapping to 11p15.4; Eif3f (mouse) mapping to 7 E3. # **SOURCE** elF3 ϵ (H-4) is a mouse monoclonal antibody raised against amino acids 78-229 mapping within an internal region of elF3 ϵ of human origin. # **PRODUCT** Each vial contains 200 μg lgG_{2b} kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin. #### **STORAGE** Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required. # **APPLICATIONS** eIF3 ϵ (H-4) is recommended for detection of eIF3 ϵ of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000). Suitable for use as control antibody for eIF3 ϵ siRNA (h): sc-105324, eIF3 ϵ siRNA (m): sc-144615, eIF3 ϵ shRNA Plasmid (h): sc-105324-SH, eIF3 ϵ shRNA Plasmid (m): sc-144615-SH, eIF3 ϵ shRNA (h) Lentiviral Particles: sc-105324-V and eIF3 ϵ shRNA (m) Lentiviral Particles: sc-144615-V. Molecular Weight of eIF3ɛ: 52 kDa. Positive Controls: COLO 205 whole cell lysate: sc-364177, PC-12 cell lysate: sc-2250 or SH-SY5Y cell lysate: sc-3812. # **RECOMMENDED SUPPORT REAGENTS** To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgGκ BP-HRP: sc-516102 or m-lgGκ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgGκ BP-FITC: sc-516140 or m-lgGκ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850. 4) Immunohistochemistry: use m-lgGκ BP-HRP: sc-516102 with DAB, 50X: sc-24982 and Immunohistomount: sc-45086, or Organo/Limonene Mount: sc-45087. ### **DATA** eIF3ɛ (H-4): sc-514292. Immunoperoxidase staining of formalin fixed, paraffin-embedded human small intestine tissue showing cytoplasmic staining of plandular cells. # **SELECT PRODUCT CITATIONS** Cuesta, R., et al. 2019. Estrogen receptor α promotes protein synthesis by fine-tuning the expression of the eukaryotic translation initiation factor 3 subunit f (eIF3f). J. Biol. Chem. 294: 2267-2278. # **RESEARCH USE** For research use only, not for use in diagnostic procedures.