SANTA CRUZ BIOTECHNOLOGY, INC.

Hemoglobin α (D-4): sc-514378

BACKGROUND

Hemoglobin (Hgb) is coupled to four iron-binding, methene-linked tetrapyrrole rings (heme). The α (16p13.3; 5'- ζ -pseudo ζ -pseudo α 2-pseudo α 1- α 2- α 1- θ 1-3') and β (11p15.5) globin loci determine the basic Hgb structure. The globin portion of Hgb consists of two α chains and two β chains arranged in pairs forming a tetramer. Each of the four globin chains covalently associates with a heme group. The bonds between α and β chains are weaker than between similar globin chains, thereby forming a cleavage plane that is important for oxygen binding and release. High affinity for oxygen occurs upon relaxation of the α 1- β 2 cleavage plane. When the two α 1- β 2 interfaces are closely bound, Hgb has a low affinity for oxygen. Hb A, which contains two α chains plus two β chains, comprises 97% of total circulating hemoglobin. The remaining 3% of total circulating hemoglobin is comprised of Hb A-2, which consists of two α chains plus two δ chains, and fetal hemoglobin (Hb F), which consists of two α chains together with two γ chains.

CHROMOSOMAL LOCATION

Genetic locus: HBA1/HBA2 (human) mapping to 16p13.3.

SOURCE

Hemoglobin α (D-4) is a mouse monoclonal antibody raised against amino acids 62-142 of Hemoglobin α of human origin.

PRODUCT

Each vial contains 200 μg IgG_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Hemoglobin α (D-4) is available conjugated to agarose (sc-514378 AC), 500 µg/0.25 ml agarose in 1 ml, for IP; to HRP (sc-514378 HRP), 200 µg/ml, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-514378 PE), fluorescein (sc-514378 FITC), Alexa Fluor[®] 488 (sc-514378 AF488), Alexa Fluor[®] 546 (sc-514378 AF546), Alexa Fluor[®] 594 (sc-514378 AF594) or Alexa Fluor[®] 647 (sc-514378 AF647), 200 µg/ml, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor[®] 680 (sc-514378 AF680) or Alexa Fluor[®] 790 (sc-514378 AF790), 200 µg/ml, for Near-Infrared (NIR) WB, IF and FCM.

Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA

APPLICATIONS

Hemoglobin α (D-4) is recommended for detection of Hemoglobin α of human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for Hemoglobin α siRNA (h): sc-41230, Hemoglobin α shRNA Plasmid (h): sc-41230-SH and Hemoglobin α shRNA (h) Lentiviral Particles: sc-41230-V.

Molecular Weight of Hemoglobin α : 16 kDa.

Positive Controls: K-562 whole cell lysate: sc-2203, HEL 92.1.7 cell lysate: sc-2270 or human plasma extract: sc-364374.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

Hemoglobin α (D-4) HRP: sc-514378 HRP. Direct western blot analysis of Hemoglobin α expression in K-562 (A) and HEL 92.1.7 (B) whole cell lysates and human plasma (C).

Hemoglobin α (D-4) Alexa Fluor® 680: sc-514378 AF680. Direct near-infrared western blot analysis of Hemoglobin α expression in human PBL whole cell lysate. Blocked with UltraCruz® Blocking Reagent: sc-516214.

SELECT PRODUCT CITATIONS

- Chen-Roetling, J., et al. 2018. Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J. Neurochem. 145: 464-473.
- Daniels, D.E., et al. 2020. Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica 105: e389-e394.
- 3. Deen, D., et al. 2021. Identification of the transcription factor MAZ as a regulator of erythropoiesis. Blood Adv. 5: 3002-3015.
- 4. Han, G., et al. 2022. Nrf2 expands the intracellular pool of the chaperone AHSP in a cellular model of β -thalassemia. Redox Biol. 50: 102239.
- Jayasinghe, M.K., et al. 2022. Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics 12: 3288-3315.
- Nakagawa, T., et al. 2023. Shotgun proteomics identification of proteins expressed in the Descemet's membrane of patients with Fuchs endothelial corneal dystrophy. Sci. Rep. 13: 10401.
- Zurlo, M., et al. 2023. Production and characterization of K562 cellular clones hyper-expressing the gene encoding α-globin: preliminary analysis of biomarkers associated with autophagy. Genes 14: 556.
- Daniels, D.E., et al. 2023. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat. Commun. 14: 6260.
- Gupta, P., et al. 2024. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat. Commun. 15: 1794.
- Chu, S.N., et al. 2025. Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells. Cell Rep. 44: 115141.

RESEARCH USE

For research use only, not for use in diagnostic procedures.