BoNT/E (KBE42): sc-51784

The Power to Question

BACKGROUND

Botulism is a rare but serious paralytic illness caused by a nerve toxin, which is produced by the anaerobic bacillus Clostridium botulinum. This neuromuscular disorder occurs through a complex series of molecular events, ultimately ending with the arrest of acetylcholine (Ach) release and flaccid paralysis. Botulinum neurotoxin type E, also referred to as BoNT/E, cleaves synaptosomal-associated protein (SNAP-25) at the C-terminal domain releasing a 26-mer peptide. This peptide product may act as an excitation-secretion uncoupling peptide (ESUP) to inhibit vesicle fusion which causes a long (at least 3 weeks) halt of Ach release after the cleavage of SNAP-25. BoNT/E also inhibits glutamate release and blocks the spike activity of pyramidal neurons. BoNT/E treatment reduces both focal and generalized kainic acidinduced seizures and also prevents the neuronal loss and long-term cognitive deficits that are associated with these seizures.

REFERENCES

- Barron, A.L., et al. 1954. Clostridium botulinum type E toxin and toxoid. Can. J. Microbiol. 1: 108-117.
- Lawrence, G.W., et al. 1996. Distinct exocytotic responses of intact and permeabilised chromaffin cells after cleavage of the 25 kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B. Eur. J. Biochem. 236: 877-886.
- Ferrer-Montiel, A.V., et al. 1998. The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking. FEBS Lett. 435: 84-88.
- Sadoul, K., et al. 1998. SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of Insulin secretion. J. Biol. Chem. 272: 33023-33027.
- Vaidyanathan, V.V., et al. 1999. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 72: 327-337.
- 6. Washbourne, P., et al. 1999. Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis. J. Neurochem. 73: 2424-2433.
- Blanes-Mira, C., et al. 2001. Thermal stabilization of the catalytic phosphorylation of a single tyrosine residue. Biochemistry 40: 2234-2242.
- 8. Agarwal, R., et al. 2005. Analysis of active site residues and structural studies: Glu335Gln is an apoenzyme. Biochemistry 44: 8291-8302.
- Costantin, L., et al. 2005. Antiepileptic effects of botulinum neurotoxin E. J. Neurosci. 25: 1943-1951.

SOURCE

BoNT/E (KBE42) is a mouse monoclonal antibody raised against BoNT/E of *Clostridium botulinum* origin.

PRODUCT

Each vial contains 100 $\mu g\ lgG_1$ in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

BoNT/E (KBE42) is recommended for detection of BONT/E of *Clostridium botulinum* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000).

Molecular Weight of BoNT/E: 156 kDa

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com