H2-D^k (15-5-5): sc-52543

The Power to Question

BACKGROUND

Major histocompatibility complex (MHC) molecules, which include human leukocyte antigens (HLAs), form an integral part of the immune response system. They are cell-surface receptors that bind foreign peptides and present them to cytotoxic T lymphocytes (CTLs). MHC class I molecules consist of two polypeptide chains, an a or heavy chain and a non-covalently associated protein, β -2-Microglobulin. MHC class II molecules consist of a non-covalent complex of an α and β chain. The differential structural properties of MHC class I and class II molecules account for their respective roles in activating different populations of T lymphocytes. H2-Dk is an MHC class I molecule that presents peptides derived from the endoplasmic reticulum lumen.

REFERENCES

- Ozato, K., Mayer, N. and Sachs, D.H. 1980. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and la antigens. J. Immunol. 124: 533-540.
- Fujiwara, H., Tsuchida, T., Levy, R.B. and Shearer, G.M. 1982. H2-K^k can influence whether cytotoxic T lymphocyte in association with H2-D^k unique or H2-K^k and H2-D^k shared self determinants. J. Immunol. 129: 1189-1193.
- Monaco, J.J. 1992. A molecular model of MHC class-I-restricted antigen processing. Immunol. Today 13: 173-179.
- Rammensee, H.G., Falk, K. and Rötzschke, O. 1993. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11: 213-244.
- Har-Vardi, I., Gopas, J., Rager-Zisman, B., Hammerling, G.J., Segal, S. and Aboud, M. 1992. Differential expression of the H2-D^k MHC class I antigen and tissue inhibitor of metalloproteinases in metastatic and nonmetastatic T-10 fibrosarcoma cells. Invasion Metastasis 12: 301-308.
- Van Ginderachter, J., Raes, G., Devoogdt, N., De Baetselier, F. and Geldhof, A. 1998. Effects of altered antigen processing on H2-Dk mediated NK inhibition in a murine T lymphoma model. Adv. Exp. Med. Biol. 451: 237-240.
- Lukacher, A.E. and Wilson, C.S. 1998. Resistance to polyoma virus-induced tumors correlates with CTL recognition of an immunodominant H2-Dkrestricted epitope in the middle T protein. J. Immunol. 160: 1724-1734.
- 8. Cresswell, P., Bangia, N., Dick, T. and Diedrich, G. 2000. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172: 21-28.
- Millrain, M., Scott, D., Addey, C., Dewchand, H., Ellis, P., Ehrmann, I., Mitchell, M., Burgoyne, P., Simpson, E. and Dyson, J. 2005. Identification of the immunodominant HY H2-D^k epitope and evaluation of the role of direct and indirect antigen presentation in HY responses. J. Immunol. 175: 7209-7217.

CHROMOSOMAL LOCATION

Genetic locus: H2-L (mouse) mapping to 17 B1..

SOURCE

 $\rm H2\text{-}D^k$ (15-5-5) is a mouse monoclonal antibody raised against C3H splenocytes of mouse origin.

PRODUCT

Each vial contains 100 $\mu g \; lg G_{2a}$ in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

 $H2-D^k$ (15-5-5) is available conjugated fluorescein (sc-52543 FITC, 200 μ g/ml), for IF, IHC(P) and FCM.

APPLICATIONS

H2-D k (15-5-5) is recommended for detection of H2-D k class I alloantigen of mouse origin by flow cytometry (1 μ g per 1 x 10 6 cells); also recommended for detection of H2-K d and with cells from mice with the H2f haplotype; non cross-reactive with other haplotypes (e.g. a, b, p, q, r or s).

Molecular Weight of H2-Dk: 41 kDa.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com