SANTA CRUZ BIOTECHNOLOGY, INC.

karyopherin α2 (G-11): sc-55537

BACKGROUND

Protein transport across the nucleus is a selective, multistep process involving several cytoplasmic factors. Proteins must be recognized as import substrates, dock at the nuclear pore complex and translocate across the nuclear envelope in an ATP-dependent fashion. Two cytosolic factors centrally involved in the recognition and docking process are the karyopherin α 1 and karyopherin β 1 subunits. Karyopherin α 1 functions in the recognition and targeting of substrates destined for nuclear import, while karyopherin β 1 serves as an adapter, tethering the karyopherin α 1/substrate complex to docking proteins on the nuclear envelope termed nucleoporins. Karyopherin $\alpha 2$ has been shown to complex with Epstein-Barr virus nuclear antigen 1 (EBNA1). Certain RNA-binding proteins are imported to the nucleus by karyopherin $\beta 2$, and karyopherin β 3 appears to be involved in the import of some ribosomal proteins.

REFERENCES

- 1. Moroianu, J., et al. 1995. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. USA 92: 2008-2011.
- 2. Moroianu, J. and Blobel, G. 1995. Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc. Natl. Acad. Sci. USA 92: 4318-4322.

CHROMOSOMAL LOCATION

Genetic locus: KPNA2 (human) mapping to 17g24.2; Kpna2 (mouse) mapping to 11 E1.

SOURCE

karyopherin $\alpha 2$ (G-11) is a mouse monoclonal antibody raised against amino acids 480-529 of karyopherin α 2 of human origin.

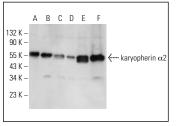
PRODUCT

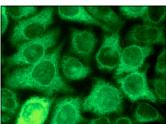
Each vial contains 200 μ g IgG_{2b} kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

karyopherin $\alpha 2$ (G-11) is recommended for detection of karyopherin $\alpha 2$ of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for karyopherin $\alpha 2$ siRNA (h): sc-35741, karyopherin α 2 siRNA (m): sc-35742, karyopherin α 2 shRNA Plasmid (h): sc-35741-SH, karvopherin α 2 shRNA Plasmid (m): sc-35742-SH, karyopherin α 2 shRNA (h) Lentiviral Particles: sc-35741-V and karyopherin α 2 shRNA (m) Lentiviral Particles: sc-35742-V.


Molecular Weight of karyopherin α 2: 52 kDa.


Positive Controls: HeLa nuclear extract: sc-2120, NIH/3T3 whole cell lysate: sc-2210 or A-375 cell lysate: sc-3811.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgG K BP-HRP: sc-516102 or m-IgG K BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

karvopherin α2 (G-11): sc-55537. Western blot analysis of karyopherin α2 expression in HeLa nuclear extract (**A**) and A-375 (**B**), NIH/3T3 (**C**), RAW 264.7 (**D**), KNRK (E) and 3611-RF (F) whole cell lysates

karyopherin α2 (G-11): sc-55537. Immunofluorescence staining of methanol-fixed HeLa cells showing cytoplasmic localization

SELECT PRODUCT CITATIONS

- 1. Guo, H., et al. 2012. Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J. Virol. 84: 387-396.
- 2. Song, K.H., et al. 2019. Inhibition of karyopherin-a2 augments radiationinduced cell death by perturbing BRCA1-mediated DNA repair. Int. J. Mol. Sci. 20: 2843.
- 3. He, J., et al. 2020. Zika virus NS2A protein induces the degradation of KPNA2 (karyopherin subunit α 2) via chaperone-mediated autophagy. Autophagy 16: 2238-2251.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

See karyopherin a2 (B-9): sc-55538 for

karyopherin α 2 antibody conjugates, including AC, HRP, FITC, PE, and Alexa Fluor® 488, 546, 594, 647, 680 and 790.