BACKGROUND

Plasmid vectors for the expression of coding regions of eukaryotic genes in bacterial, insect and mammalian hosts are in common usage; such expression vectors are frequently used to encode hybrid fusion proteins consisting of an eukaryotic target protein and a specialized region designed to aid in the purification and visualization of the target protein. A system that has proven to be very successful relies on the insertion of a six histidine (His6) sequence in the N-terminus of the encoded protein, allowing for efficient coupling to Ni²⁺-chelating resins and purification by single step affinity chromatography. This polyhistidine sequence can then be removed by specific cleavage at sites recognized by enzymes such as thrombin or enterokinase, permitting the separation of the target protein from the polyhistidine tag. Visualization of such fusion proteins can be achieved by utilizing antibodies generated against specific peptide sequences downstream from the multiple cloning site.

REFERENCES

SOURCE

His-probe (HIS.H8) is a mouse monoclonal antibody raised against a 6x His-tagged polypeptide.

PRODUCT

Each vial contains 100 µg IgG2b in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

His-probe (HIS.H8) is recommended for detection of fusion proteins encoded by polyhistidine expression vectors by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

STORAGE

Store at 4°C. **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

His-probe (HIS.H8): sc-57598. Western blot analysis of mouse recombinant His-probe-tagged p27.

SELECT PRODUCT CITATIONS

CONJUGATES

See His-probe (H-3): sc-8036 for His-probe antibody conjugates, including AC, HRP, FITC, PE, and Alexa Fluor® 488, 546, 594, 647, 680 and 790.