eIF3β siRNA (m): sc-60081

The Power to Question

BACKGROUND

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. Eukaryotic initiation factors (elFs) are utilized in a sequence of reactions that lead to 80S ribosomal assembly and, ultimately, translation. The eukaryotic initiation factor-3 (elF3) scaffolding structure is the largest of the elF complexes and includes elF3 α , elF3 β , elF3 γ , elF3 δ , elF3 ξ , elF3 γ , elF3 η and elF3 θ , all of which function to control the assembly of the 40S ribosomal subunit. Association of elF3 proteins with the 40S ribosomal subunit stabilizes elF2-GTP-Met-tRNAiMet complex association and mRNA binding, and promotes dissociation of 80S ribosomes into 40S and 60S subunits, thereby promoting the assembly of the pre-initiation complex. Overexpression of elF3 proteins is common in several cancers, suggesting a role for elF3 proteins in tumorigenesis.

REFERENCES

- Valásek, L., et al. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24: 9437-9455.
- Peterson, T.R., et al. 2005. eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol. Cell 20: 655-657.
- 3. Dong, Z., et al. 2006. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol. 59: 169-180.
- 4. LeFebvre, A.K., et al. 2006. Translation initiation factor elF4G-1 binds to elF3 through the elF3ε subunit. J. Biol. Chem. 281: 22917-22932.
- 5. Hinnebusch, A.G. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31: 553-562.
- Masutani, M., et al. 2007. Reconstitution reveals the functional core of mammalian elF3. EMBO J. 26: 3373-3383.
- Zhang, L., et al. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282: 5790-5800.
- 8. Sato, H., et al. 2007. Measles virus N protein inhibits host translation by binding to elF3-p40. J. Virol. 81: 11569-11576.

CHROMOSOMAL LOCATION

Genetic locus: Eif3i (mouse) mapping to 4 D2.2.

PRODUCT

eIF3 β siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see eIF3 β shRNA Plasmid (m): sc-60081-SH and eIF3 β shRNA (m) Lentiviral Particles: sc-60081-V as alternate gene silencing products.

For independent verification of elF3 β (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-60081A, sc-60081B and sc-60081C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

eIF3 β siRNA (m) is recommended for the inhibition of eIF3 β expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

eIF3 β (A-7): sc-374156 is recommended as a control antibody for monitoring of eIF3 β gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor eIF3 β gene expression knockdown using RT-PCR Primer: eIF3 β (m)-PR: sc-60081-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.