DLD siRNA (m): sc-62219 The Power to Question ## **BACKGROUND** DLD (dihydrolipoyl dehyrogenase or dihydrolipoamide dehydrogenase), also known as GCSL (glycine cleavage system L protein), PHE3, DLDH or LAD, is a member of the class I pyridine nucleotide-disulfide oxidoreductase family. DLD is a flavin-dependent oxidoreductase and functions as a component of the α -keto acid dehydrogenase, the pyruvate dehydrogenase, the α -ketoglutarate dehydrogenase, the branched-chain α -keto acid dehydrogenase and as the L protein in the mitochondrial glycine cleavage system. DLD localizes to the mitochondrial matrix and exists as a monomer, homodimer or tetramer that is required for energy metabolism in all eukaryotes. More specifically, DLD generates NADH and lipoic acid from dihydrolipoic acid and NAD+. The DLD homodimer catalyzes the opposite reaction. Mutations in the gene encoding DLD can result in MSUD (maple syrup urine disease) and congenital infantile lactic acidosis. # **REFERENCES** - Brown, A.M., et al. 2004. Association of the dihydrolipoamide dehydrogenase gene with Alzheimer's disease in an Ashkenazi Jewish population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131: 60-66. - Starkov, A.A., et al. 2004. Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24: 7779-7788. - Nishimoto, E., et al. 2006. Thermal unfolding process of dihydrolipoamide dehydrogenase studied by fluorescence spectroscopy. J. Biochem. 140: 349-357. - 4. Cameron, J.M., et al. 2006. Novel mutations in dihydrolipoamide dehydrogenase deficiency in two cousins with borderline-normal PDH complex activity. Am. J. Med. Genet. A 140: 1542-1552. - Smolle, M., et al. 2006. A new level of architectural complexity in the human pyruvate dehydrogenase complex. J. Biol. Chem. 281: 19772-19780. - Kim, H. 2006. Activity of human dihydrolipoamide dehydrogenase is largely reduced by mutation at isoleucine-51 to alanine. J. Biochem. Mol. Biol. 39: 223-227. ## CHROMOSOMAL LOCATION Genetic locus: Dld (mouse) mapping to 12 A3. #### **PRODUCT** DLD siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see DLD shRNA Plasmid (m): sc-62219-SH and DLD shRNA (m) Lentiviral Particles: sc-62219-V as alternate gene silencing products. For independent verification of DLD (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of ly-ophilized siRNA. These include: sc-62219A, sc-62219B and sc-62219C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** DLD siRNA (m) is recommended for the inhibition of DLD expression in mouse cells. ## **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** DLD (G-2): sc-365977 is recommended as a control antibody for monitoring of DLD gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor DLD gene expression knockdown using RT-PCR Primer: DLD (m)-PR: sc-62219-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**