OSBP2 siRNA (h): sc-62719 The Power to Question ## **BACKGROUND** The Oxysterol-binding protein (OSBP) family of proteins consist of OSBP (OSBP1) and OSBP2 (ORP-4), which share a high overall similarity. OSBPs are involved in lipid metabolism and signal transduction, as well as vesicle transport, and can translocate to the periphery of Golgi membranes when they are bound to oxysterols. The OSBP protein transports sterols from lysosomes to the nucleus, where sterols downregulate the genes for HMG synthetase, HMG-CoA reductase and the low density lipoprotein receptor (LDLR). OSBP localizes to the cytosol and is widely expressed, while OSBP2 is mainly detected in testis, retina and fetal liver. The extracellular signal-regulated kinase (ERK) signaling pathway is controlled by OSBP via its cholesterol-binding properties. OSBP binds with a high affinity to 25-hydroxy-cholesterol (25-HC), a suppressor of cholesterol synthesis gene transcription in cultured cells. # **REFERENCES** - Jaworski, C.J., et al. 2001. A family of 12 human genes containing oxysterol-binding domains. Genomics 78: 185-196. - Moreira, E.F., et al. 2001. Molecular and biochemical characterization of a novel oxysterol-binding protein (OSBP2) highly expressed in retina. J. Biol. Chem. 276: 18570-18578. - Wang, C., et al. 2002. Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. Biochem. J. 361: 461-472 - 4. Henriques Silva, N., et al. 2003. HLM/OSBP2 is expressed in chronic myeloid leukemia. Int. J. Mol. Med. 12: 663-666. - Lehto, M. et al. 2003. The OSBP-related proteins: a novel protein family involved in vesicle transport, cellular lipid metabolism, and cell signalling. Biochim. Biophys. Acta 1631: 1-11. - Wyles, J.P., et al. 2007. Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Exp. Cell Res. 313: 1426-1437. ## CHROMOSOMAL LOCATION Genetic locus: OSBP2 (human) mapping to 22q12.2. #### **PRODUCT** OSBP2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see OSBP2 shRNA Plasmid (h): sc-62719-SH and OSBP2 shRNA (h) Lentiviral Particles: sc-62719-V as alternate gene silencing products. For independent verification of OSBP2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-62719A, sc-62719B and sc-62719C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** OSBP2 siRNA (h) is recommended for the inhibition of OSBP2 expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** OSBP2 (B-1): sc-365922 is recommended as a control antibody for monitoring of OSBP2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. # **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor OSBP2 gene expression knockdown using RT-PCR Primer: OSBP2 (h)-PR: sc-62719-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**