TIF1γ siRNA (m): sc-63128 The Power to Question #### **BACKGROUND** Transcriptional intermediary factor 1- α (TIF1 α) mediates transcriptional events by interactions with the AF2 region of several nuclear receptors, such as the estrogen, retinoic acid, and vitamin D $_3$ receptors. TIF1 α localizes to nuclear bodies and is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains (RING, B-box type 1 and B-box type 2) and a coiled-coil region. TIF1 β is also a member of the TRIM family that contains both a Cys/His PHD finger and bromodomain that form a cooperative unit required for transcriptional repression. TIF1 β mediates transcriptional control by interaction with the Krüppel-associated box (KRAB) repression domain found in many transcription factors and by binding DNA via its zinc finger. TIF1 γ has a similar structure to the previous two TRIM members, though it presents several functional differences. TIF1 γ interacts with the Smad2/3 transcription factor in hematopoietic, mesenchymal, and epithelial cell types to mediate different transcriptional effects in response to TGF β . ## **REFERENCES** - Friedman, J., et al. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10: 2067-2078. - Moosmann, P., et al. 1996. Transcriptional repression by RING finger protein TIF1-β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24: 4859-4867. - 3. Venturini, L., et al. 1999. TIF1 γ , a novel member of the transcriptional intermediary factor 1 family. Oncogene 18: 1209-1217. - 4. Online Mendelian Inheritance in Man, OMIM™. 2001. Johns Hopkins University, Baltimore, MD. MIM Number: 601742. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/ - 5. Schultz, D., et al. 2001. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi- 2α subunit of NuRD. Genes Dev. 15: 428-443. - He, W., et al. 2006. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125: 929-941. - 7. Heldin, C.H., et al. 2006. A new twist in Smad signaling. Dev. Cell 10: 685-686. # **CHROMOSOMAL LOCATION** Genetic locus: Trim33 (mouse) mapping to 3 F2.2. #### **PRODUCT** TIF1 γ siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see TIF1 γ shRNA Plasmid (m): sc-63128-SH and TIF1 γ shRNA (m) Lentiviral Particles: sc-63128-V as alternate gene silencing products. For independent verification of TIF1 γ (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-63128A, sc-63128B and sc-63128C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** TIF1 γ siRNA (m) is recommended for the inhibition of TIF1 γ expression in mouse cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** TIF1 γ (XX-19): sc-101179 is recommended as a control antibody for monitoring of TIF1 γ gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor TIF1 γ gene expression knockdown using RT-PCR Primer: TIF1 γ (m)-PR: sc-63128-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com