CaMKIV siRNA (r): sc-72193 The Power to Question ### **BACKGROUND** The Ca²+/calmodulin-dependent protein kinases (CaM kinases) comprise a structurally related subfamily of serine/threonine kinases which include CaMKI, CaMKII and CaMKIV. CaMKII is a ubiquitously expressed serine/threonine protein kinase that is activated by Ca²+ and calmodulin (CaM) and has been implicated in regulation of the cell cycle and transcription. There are four CaMKII isozymes designated α , β , γ and δ , which may or may not be coexpressed in the same tissue type. CaMKIV is stimulated by Ca²+ and CaM but also requires phosphorylation by a CaMK for full activation. Stimulation of the T cell receptor CD3 signaling complex with an anti-CD3 monoclonal anti-body leads to a 10-40 fold increase in CaMKIV activity. An additional kinase, CaMKK, functions to activate CaMKI through the specific phosphorylation of the regulatory Threonine residue at position 177. ## **REFERENCES** - Tombes, R.M., et al. 1995. G₁ cell cycle arrest apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional Ca²⁺/CaM kinase). Cell Growth Differ. 6: 1063-1070. - Hama, N., et al. 1995. Calcium/calmodulin-dependent protein kinase II downregulates both calcineurin and protein kinase c-mediated pathways for cytokine gene transcription in human T cells. J. Exp. Med. 181: 1217-1222. - 3. Baltas, L.G., et al. 1995. The cardiac sarcoplasmic reticulum phospholamban kinase is a distinct δ-CaM kinase isozyme. FEBS Lett. 373: 71-75. - Tokumitsu, H., et al. 1995. Characterization of a CaM-kinase cascade: molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 270: 19320-19324. - Park, I.K., et al. 1995. Activation of Ca²⁺/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes. J. Biol. Chem. 270: 30464-30469. - Tashima, K., et al. 1996. Overexpression of Ca²⁺/calmodulin-dependent protein kinase II inhibits neurite outgrowth of PC12 cells. J. Neurochem. 66: 57-64. ## CHROMOSOMAL LOCATION Genetic locus: Camk4 (rat) mapping to 18p12. # **PRODUCT** CaMKIV siRNA (r) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see CaMKIV shRNA Plasmid (r): sc-72193-SH and CaMKIV shRNA (r) Lentiviral Particles: sc-72193-V as alternate gene silencing products. For independent verification of CaMKIV (r) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-72193A, sc-72193B and sc-72193C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCL, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ### **APPLICATIONS** CaMKIV siRNA (r) is recommended for the inhibition of CaMKIV expression in rat cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor CaMKIV gene expression knockdown using RT-PCR Primer: CaMKIV (r)-PR: sc-72193-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. ## **SELECT PRODUCT CITATIONS** - Li, M., et al. 2011. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway. Biochem. Biophys. Res. Commun. 411: 667-672. - 2. Chen, K., et al. 2011. Exendin-4 regulates Glut2 expression via the CaMKK/CaMKIV pathway in a pancreatic β -cell line. Metab. Clin. Exp. 60: 579-585. - Bell, K.F., et al. 2013. Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption. J. Neurochem. 126: 274-287. - 4. Zhou, X., et al. 2014. Calcium/calmodulin-dependent protein kinase II regulates cyclooxygenase-2 expression and prostaglandin E2 production by activating cAMP-response element-binding protein in rat peritoneal macrophages. Immunology 143: 287-299. - Luo, B., et al. 2014. Electrically induced brain-derived neurotrophic factor release from Schwann cells. J. Neurosci. Res. 92: 893-903. ## **RESEARCH USE** For research use only, not for use in diagnostic procedures.