BACKGROUND

In the intact cell, DNA closely associates with histones and other nuclear proteins to form chromatin. The remodeling of chromatin is believed to be a critical component of transcriptional regulation and a major source of this remodeling is brought about by the acetylation of nucleosomal histones. Acetylation of lysine residues in the amino-terminal tail domain of histone results in an allosteric change in the nucleosomal conformation and an increased accessibility to transcription factors by DNA. Conversely, the deacetylation of histones is associated with transcriptional silencing. Several mammalian proteins have been identified as nuclear histone acetylases, including GCN5, PCAF (for p300/CBP-associated factor), p300/CBP and the TFIIID subunit TAF II p250. Mammalian HDAC1 (also designated HD1), HDAC2 (also designated mammalian Rpd3) and HDAC3, all of which are related to the yeast transcriptional regulator Rpd3p, have been identified as histone deacetylases.

GENETIC LOCUS: HDAC2 (human) mapping to 6q21; HDAC2 (mouse) mapping to 10 B1.

SOURCE

HDAC2 (3F3) is a mouse monoclonal antibody raised against amino acids 473-488 corresponding to the C-terminus of HDAC2 of human origin.

PRODUCT

Each vial contains 200 µg IgG1 kappa lightchain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

HDAC2 (3F3) is recommended for detection of HDAC2 of mouse, rat, human and bovine origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500); non-cross-reactive with other HDAC proteins.

Molecular Weight of HDAC2: 59 kDa.

SELECT PRODUCT CITATIONS

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA.