PIG-V siRNA (h): sc-88579

The Power to Question

BACKGROUND

Phosphatidylinositol-glycans (PIGs) are multi-pass transmembrane proteins that localize to the endoplasmic reticulum. PIGs exhibit various functions but all are crucial for the biosynthesis of the glycosylphosphatidylinositol (GPI)-anchor, which acts as a membrane anchor for many eukaryotic cells. Some PIG proteins are components of the GPI transamidase complex and play a role in the recognition of either the GPI attachment signal or the lipid portion of GPI. Other PIGs belong to the glycosyltransferase complex (GPI-N-acetylglucosaminyltransferase or GPI-GnT) and function in the transfer of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI). A variety of other PIGs play distinct roles in GPI synthesis. PIG-V, a 493 amino acid protein, functions as a mannosyltransferaise in GPI anchor biosynthesis.

REFERENCES

- Moran, P., Raab, H., Kohr, W.J. and Caras, I.W. 1991. Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site. J. Biol. Chem. 266: 1250-1257.
- Sipos, G., Puoti, A. and Conzelmann, A. 1995. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. J. Biol. Chem. 270: 19709-19715.
- Watanabe, R., Murakami, Y., Marmor, M.D., Inoue, N., Maeda, Y., Hino, J., Kangawa, K., Julius, M. and Kinoshita, T. 2000. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 19: 4402-4411.
- Maeda, Y., Watanabe, R., Harris, C.L., Hong, Y., Ohishi, K., Kinoshita, K. and Kinoshita, T. 2001. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20: 250-261.
- Ikezawa, H. 2002. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol. Pharm. Bull. 25: 409-417.
- Kang, J.Y., Hong, Y., Ashida, H., Shishioh, N., Murakami, Y., Morita, Y.S., Maeda, Y. and Kinoshita, T. 2005. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J. Biol. Chem. 280: 9489-9497.
- Ashida, H., Hong, Y., Murakami, Y., Shishioh, N., Sugimoto, N., Kim, Y.U., Maeda, Y. and Kinoshita, T. 2005. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol. Biol. Cell 16: 1439-1448.
- Zhu, Y., Vionnet, C. and Conzelmann, A. 2006. Ethanolaminephosphate side chain added to glycosylphosphatidylinositol (GPI) anchor by mcd4p is required for ceramide remodeling and forward transport of GPI proteins from endoplasmic reticulum to Golgi. J. Biol. Chem. 281: 19830-19839.
- 9. Wiedman, J.M., Fabre, A.L., Taron, B.W., Taron, C.H. and Orlean, P. 2007. *In vivo* characterization of the GPI assembly defect in yeast mcd4-174 mutants and bypass of the Mcd4p-dependent step in mcd4 Δ cells. FEMS Yeast Res. 7: 78-83.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

CHROMOSOMAL LOCATION

Genetic locus: PIGV (human) mapping to 1p36.11.

PRODUCT

PIG-V siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see PIG-V shRNA Plasmid (h): sc-88579-SH and PIG-V shRNA (h) Lentiviral Particles: sc-88579-V as alternate gene silencing products.

For independent verification of PIG-V (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-88579A, sc-88579B and sc-88579C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

PIG-V siRNA (h) is recommended for the inhibition of PIG-V expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor PIG-V gene expression knockdown using RT-PCR Primer: PIG-V (h)-PR: sc-88579-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com