GDPD3 siRNA (h): sc-93057 The Power to Question ## **BACKGROUND** Phosphodiesterases (PDEs) are important for the downregulation of the intracellular level of the second messenger cyclic adenosine monophosphate (cAMP) by hydrolyzing cAMP to 5'AMP. The PDE family contains proteins that serve tissue-specific roles in the regulation of lipolysis, glycogenolysis, myocardial contractility and smooth muscle relaxation. GDPD3 (glycerophosphodiester phosphodiesterase domain-containing protein 3) is a 318 amino acid multi-pass membrane protein that belongs to the glycerophosphoryl diester phosphodiesterase family and contains one GDPD domain. Existing as two alternatively spliced isoforms, GDPD3 is encoded by a gene that maps to human chromosome 16p11.2. Chromosome 16 encodes over 900 genes and comprises nearly 3% of the human genome. Giant axonal neuropathy, Rubinstein-Taybi syndrome and Crohn's disease are associated with defects in chromosome 16. # **REFERENCES** - 1. Baraitser, M., et al. 1983. The Rubinstein-Taybi syndrome: occurrence in two sets of identical twins. Clin. Genet. 23: 318-320. - Breuning, M.H., et al. 1993. Rubinstein-Taybi syndrome caused by submicroscopic deletions within 16p13.3. Am. J. Hum. Genet. 52: 249-254. - 3. Bomont, P., et al. 2000. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet. 26: 370-374. - 4. Kuhlenbäumer, G., et al. 2002. Giant axonal neuropathy (GAN): case report and two novel mutations in the gigaxonin gene. Neurology 58: 1273-1276. - 5. Cho, J.H. 2004. Advances in the genetics of inflammatory bowel disease. Curr. Gastroenterol. Rep. 6: 467-473. - 6. Mathew, C.G., et al. 2004. Genetics of inflammatory bowel disease: progress and prospects. Hum. Mol. Genet. 13: R161-R168. - 7. Martin, J., et al. 2004. The sequence and analysis of duplication-rich human chromosome 16. Nature 432: 988-994. - 8. Francis, S.H., et al. 2011. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91: 651-690. # CHROMOSOMAL LOCATION Genetic locus: GDPD3 (human) mapping to 16p11.2. # **PRODUCT** GDPD3 siRNA (h) is a pool of 2 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see GDPD3 shRNA Plasmid (h): sc-93057-SH and GDPD3 shRNA (h) Lentiviral Particles: sc-93057-V as alternate gene silencing products. For independent verification of GDPD3 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-93057A and sc-93057B. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** GDPD3 siRNA (h) is recommended for the inhibition of GDPD3 expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor GDPD3 gene expression knockdown using RT-PCR Primer: GDPD3 (h)-PR: sc-93057-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. ## **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com