Keratin 33A siRNA (h): sc-94159 The Power to Oventio #### **BACKGROUND** The Keratin multigene family is made of "soft" epithelial cytokeratins and "hard" hair Keratins. While the epithelial cytokeratins are involved in the layering and formation of epithelia, the hair Keratins are responsible for creating nails and hair. There are two types of Keratins: the acidic class I Keratin proteins and the basic/neutral class II Keratin proteins. Keratin 33A, also known as HA3I (hair Keratin, type I Ha3-I), Krt1-3 or KRTHA3A, is a 404 amino acid protein that is a member of the acidic class I Keratin protein family. Expressed in the human hair follicle, Keratin 33A forms heterodimers with type II Keratins to form nails and hair. The gene encoding Keratin 33A maps to human chromosome 17. Two key tumor suppressor genes are associated with chromosome 17, namely, p53 and BRCA1. Malfunction or loss of p53 expression is associated with malignant cell growth and Li-Fraumeni syndrome. Like p53, BRCA1 is directly involved in DNA repair, and is liked to predisposition of cancers of the ovary, colon, prostate gland and fallopian tubes. #### **REFERENCES** - Hall, J.M., Friedman, L., Guenther, C., Lee, M.K., Weber, J.L., Black, D.M. and King, M.C. 1992. Closing in on a breast cancer gene on chromosome 17q. Am. J. Hum. Genet. 50: 1235-1242. - Yu, J., Yu, D.W., Checkla, D.M., Freedberg, I.M. and Bertolino, A.P. 1993. Human hair keratins. J. Invest. Dermatol. 101: 56S-59S. - Rogers, M.A., Schweizer, J., Kreig, T. and Winter, H. 1994. A novel human type I hair keratin gene: evidence for two keratin hHa3 isoforms. Mol. Biol. Rep. 20: 155-161. - Evans, S.C. and Lozano, G. 1997. The Li-Fraumeni syndrome: an inherited susceptibility to cancer. Mol. Med. Today 3: 390-395. - Rogers, M.A., Winter, H., Wolf, C., Heck, M. and Schweizer, J. 1998. Characterization of a 190-kilobase pair domain of human type I hair keratin genes. J. Biol. Chem. 273: 26683-26691. - Langbein, L., Rogers, M.A., Winter, H., Praetzel, S., Beckhaus, U., Rackwitz, H.R. and Schweizer, J. 1999. The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. J. Biol. Chem. 274: 19874-19884. - 7. Soussi, T., Dehouche, K. and Beroud, C. 2000. p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum. Mutat. 15: 105-113. - 8. Piura, B., Rabinovich, A. and Yanai-Inbar, I. 2001. Three primary malignancies related to BRCA mutation successively occurring in a BRCA1 185delAG mutation carrier. Eur. J. Obstet. Gynecol. Reprod. Biol. 97: 241-244. - 9. Langbein, L. and Schweizer, J. 2005. Keratins of the human hair follicle. Int. Rev. Cytol. 243: 1-78. ## CHROMOSOMAL LOCATION Genetic locus: KRT33A (human) mapping to 17g21.2. ### **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. #### **PRODUCT** Keratin 33A siRNA (h) is a pool of 2 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Keratin 33A shRNA Plasmid (h): sc-94159-SH and Keratin 33A shRNA (h) Lentiviral Particles: sc-94159-V as alternate gene silencing products. For independent verification of Keratin 33A (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-94159A and sc-94159B. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### **APPLICATIONS** Keratin 33A siRNA (h) is recommended for the inhibition of Keratin 33A expression in human cells. ## **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ### **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor Keratin 33A gene expression knockdown using RT-PCR Primer: Keratin 33A (h)-PR: sc-94159-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. ### **RESEARCH USE** For research use only, not for use in diagnostic procedures. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com