SANTA CRUZ BIOTECHNOLOGY, INC.

β3Gn-T2 siRNA (h): sc-94700

BACKGROUND

A family of human β 1,3-galactosyltransferases (β 3Gn-Ts) consists of nine members (β 3Gn-T1, -T2, -T3, -T4, -T5, -T6, -T7, -T8 and -T9). β 3Gn-T1 catalyzes the formation of type 1 oligosaccharides. β 3GnT-2 converts lacto-Ntriose II into lacto-N-tetraose and lacto-N-neotetraose and can form a heterodimer with β 3Gn-T8, which, as a complex, exhibits higher enzymatic activity. Unlike the ubiquitously expressed β 3Gn-T2, β 3Gn-T3 is specifically expressed in colon, jejunum, stomach, esophagus, placenta and trachea, and β 3Gn-T4 is mainly expressed in brain. β 3Gn-T5 is essential for the biosynthesis of Lewis antigens and may play a role in gastric cancer as a result of its participation in chronic *H. pylori* infection. β 3Gn-T6 may be a useful marker for distinguishing between benign adenomas and premalignant lesions. β 3Gn-T7 acts as an anti-migration factor for a lung cancer cell line.

REFERENCES

- 1. Shiraishi, N., et al. 2001. Identification and characterization of three novel β 1,3-N-acetylglucosaminyltransferases structurally related to the β 1, 3-galactosyltransferase family. J. Biol. Chem. 276: 3498-3507.
- Seko, A., et al. 2004. β1,3-N-acetylglucosaminyltransferase-7 (β3Gn-T7) acts efficiently on keratan sulfate-related glycans. FEBS Lett. 556: 216-220.
- Iwai, T., et al. 2005. Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc. Natl. Acad. Sci. USA 102: 4572-4577.
- 4. Deo, V.K., et al. 2006. Multiple co-transfection and co-expression of human β -1,3-N-acetylglucosaminyltransferase with human calreticulin chaperone cDNA in a single step in insect cells. Biotechnol. Appl. Biochem. 43: 129-135.

CHROMOSOMAL LOCATION

Genetic locus: B3GNT2 (human) mapping to 2p15.

PRODUCT

 $\beta 3 Gn$ -T2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $\beta 3 Gn$ -T2 shRNA Plasmid (h): sc-94700-SH and $\beta 3 Gn$ -T2 shRNA (h) Lentiviral Particles: sc-94700-V as alternate gene silencing products.

For independent verification of β 3Gn-T2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-94700A, sc-94700B and sc-94700C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\beta 3 \text{Gn-T2}$ siRNA (h) is recommended for the inhibition of $\beta 3 \text{Gn-T2}$ expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 β 3Gn-T2 (8G8): sc-134231 is recommended as a control antibody for monitoring of β 3Gn-T2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-IgGκ BP-FITC: sc-516140 or m-IgGκ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor β 3Gn-T2 gene expression knockdown using RT-PCR Primer: β 3Gn-T2 (h)-PR: sc-94700-PR (20 µl). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

 Shibata, T.K., et al. 2012. Identification of mono- and disulfated N-acetyllactosaminyl oligosaccharide structures as epitopes specifically recognized by humanized monoclonal antibody HMOCC-1 raised against ovarian cancer. J. Biol. Chem. 287: 6592-6602.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.