SANTA CRUZ BIOTECHNOLOGY, INC.

SDR-O siRNA (h): sc-95890

BACKGROUND

SDR-O (orphan short-chain dehydrogenase/reductase), also known as SDR9C7 (short chain dehydrogenase/reductase family 9C, member 7) or RDHS, is a 313 amino acid cytoplasmic protein that is highly expressed in liver. While SDR-O shares homology with members of the SDR family, it does not possess retinoid or dehydrogenase activity. Instead, SDR-O has been hypothesized to either act as a regulatory factor, catalyze the metabolism of nuclear receptor ligands, or bind substrates to influence metabolism. The gene encoding SDR-O maps to human chromosome 12, which encodes over 1,100 genes and comprises approximately 4.5% of the human genome. Chromosome 12 is associated with a variety of diseases and afflictions, including hypochondrogenesis, achondrogenesis, Kniest dysplasia, Noonan syndrome and trisomy 12p, which causes facial developmental defects and seizure disorders.

REFERENCES

- 1. Delgado Carrasco, J., Casanova Morcillo, A., Zabalza Alvillos, M. and Ayala Garces, A. 2001. Achondrogenesis type II-hypochondrogenesis: radiological features.Case report. An. Esp. Pediatr. 55: 553-557.
- Chen, W., Song, M.S. and Napoli, J.L. 2002. SDR-0: an orphan shortchain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12. Gene 294: 141-146.
- 3. Yokoyama, T., Nakatani, S. and Murakami, A. 2003. A case of Kniest dysplasia with retinal detachment and the mutation analysis. Am. J. Ophthalmol. 136: 1186-1188.
- 4. Online Mendelian Inheritance in Man, OMIM™. 2005. Johns Hopkins University, Baltimore, MD. MIM Number: 609769. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- Forzano, F., Lituania, M., Viassolo, A., Superti-Furga, V., Wildhardt, G., Zabel, B. and Faravelli, F. 2007. A familial case of achondrogenesis type II caused by a dominant COL2A1 mutation and "patchy" expression in the mosaic father. Am. J. Med. Genet. A 143A: 2815-2820.
- Persson, B., Kallberg, Y., Bray, J.E., Bruford, E., Dellaporta, S.L., Favia, A.D., Duarte, R.G., Jörnvall, H., Kavanagh, K.L., Kedishvili, N., Kisiela, M., Maser, E., Mindnich, R., Orchard, S., Penning, T.M., Thornton, J.M., et al. 2009. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 178: 94-98.
- Lo, F.S., Luo, J.D., Lee, Y.J., Shu, S.G., Kuo, M.T. and Chiou, C.C. 2009. High resolution melting analysis for mutation detection for PTPN11 gene: applications of this method for diagnosis of Noonan syndrome. Clin. Chim. Acta 409: 75-77.
- Benussi, D.G., Costa, P., Zollino, M., Murdolo, M., Petix, V., Carrozzi, M. and Pecile, V. 2009. Trisomy 12p and monosomy 4p: phenotype-genotype correlation. Genet. Test. Mol. Biomarkers 13: 199-204.
- Kowalik, D., Haller, F., Adamski, J. and Moeller, G. 2009. In search for function of two human orphan SDR enzymes: hydroxysteroid dehydrogenase like 2 (HSDL2) and short-chain dehydrogenase/reductase-orphan (SDR-0).
 J. Steroid Biochem. Mol. Biol. 117: 117-124.

CHROMOSOMAL LOCATION

Genetic locus: SDR9C7 (human) mapping to 12q13.3.

PRODUCT

SDR-O siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see SDR-O shRNA Plasmid (h): sc-95890-SH and SDR-O shRNA (h) Lentiviral Particles: sc-95890-V as alternate gene silencing products.

For independent verification of SDR-0 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-95890A, sc-95890B and sc-95890C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

SDR-0 siRNA (h) is recommended for the inhibition of SDR-0 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor SDR-O gene expression knockdown using RT-PCR Primer: SDR-O (h)-PR: sc-95890-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.