MPPED2 siRNA (h): sc-96737 The Power to Question #### **BACKGROUND** MPPED2 (Metallophosphoesterase domain-containing protein 2), also known as C11orf8, FAM1B or 239FB, is a 294 amino acid protein. Expressed primarily in fetal brain tissue, MPPED2 is encoded by a gene that maps to chromosome 11. With approximately 135 million base pairs and 1,400 genes, chromosome 11 makes up around 4% of human genomic DNA and is considered a gene and disease association dense chromosome. The chromosome 11 encoded Atm gene is important for regulation of cell cycle arrest and apoptosis following double stranded DNA breaks. Atm mutation leads to the disorder known as ataxia-telangiectasia. The blood disorders Sickle cell anemia and thalassemia are caused by HBB gene mutations, while Wilms' tumors, WAGR syndrome and Denys-Drash syndrome are associated with mutations of the WT1 gene. Jervell and Lange-Nielsen syndrome, Jacobsen syndrome, Niemann-Pick disease, hereditary angioedema and Smith-Lemli-Opitz syndrome are also associated with defects in chromosome 11. ## **REFERENCES** - Schwartz, F., Neve, R., Eisenman, R., Gessler, M. and Bruns, G. 1994. A WAGR region gene between PAX-6 and FSHB expressed in fetal brain. Hum. Genet. 94: 658-664. - Schwartz, F., Eisenman, R., Knoll, J., Gessler, M. and Bruns, G. 1995. cDNA sequence, genomic organization, and evolutionary conservation of a novel gene from the WAGR region. Genomics 29: 526-532. - 3. Schwartz, F. and Ota, T. 1997. The 239AB gene on chromosome 22: a novel member of an ancient gene family. Gene 194: 57-62. - Online Mendelian Inheritance in Man, OMIM™. 2002. Johns Hopkins University, Baltimore, MD. MIM Number: 600911. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/ - 5. Grossfeld, P.D., Mattina, T., Lai, Z., Favier, R., Jones, K.L., Cotter, F. and Jones, C. 2004. The 11q terminal deletion disorder: a prospective study of 110 cases. Am. J. Med. Genet. A 129A: 51-61. - Loussouarn, G., Baró, I. and Escande, D. 2006. KCNQ1 K+ channel-mediated cardiac channelopathies. Methods Mol. Biol. 337: 167-183. - 7. Taylor, T.D., Noguchi, H., Totoki, Y., Toyoda, A., Kuroki, Y., Dewar, K., Lloyd, C., Itoh, T., Takeda, T., Kim, D.W., She, X., Barlow, K.F., Bloom, T., Bruford, E., Chang, J.L., Cuomo, C.A., Eichler, E., Fitzgerald, M.G., Jaffe, D.B., LaButti, K., Nicol, R., Park, H.S., et al. 2006. Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature 440: 497-500. - Zehelein, J., Kathoefer, S., Khalil, M., Alter, M., Thomas, D., Brockmeier, K., Ulmer, H.E., Katus, H.A. and Koenen, M. 2006. Skipping of Exon 1 in the KCNQ1 gene causes Jervell and Lange-Nielsen syndrome. J. Biol. Chem. 281: 35397-35403. - Ataga, K.I., Cappellini, M.D. and Rachmilewitz, E.A. 2007. β-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability. Br. J. Haematol. 139: 3-13. # CHROMOSOMAL LOCATION Genetic locus: MPPED2 (human) mapping to 11p14.1. #### **PRODUCT** MPPED2 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see MPPED2 shRNA Plasmid (h): sc-96737-SH and MPPED2 shRNA (h) Lentiviral Particles: sc-96737-V as alternate gene silencing products. For independent verification of MPPED2 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-96737A, sc-96737B and sc-96737C. ## STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. # **APPLICATIONS** MPPED2 siRNA (h) is recommended for the inhibition of MPPED2 expression in human cells. ## **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. # **GENE EXPRESSION MONITORING** MPPED2 (NQ-A35): sc-134391 is recommended as a control antibody for monitoring of MPPED2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). #### **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor MPPED2 gene expression knockdown using RT-PCR Primer: MPPED2 (h)-PR: sc-96737-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. # **RESEARCH USE** For research use only, not for use in diagnostic procedures.